本文为您提供日志数据分析的一些案例。
5分钟错误率超过40%时触发报警
统计每分钟的500错误率,当最近5分钟错误率超过40%时触发报警。
status:500 | select __topic__, max_by(error_count,window_time)/1.0/sum(error_count) as error_ratio, sum(error_count) as total_error from (
select __topic__, count(*) as error_count , __time__ - __time__ % 300 as window_time from log group by __topic__, window_time
)
group by __topic__ having max_by(error_count,window_time)/1.0/sum(error_count) > 0.4 and sum(error_count) > 500 order by total_error desc limit 100
统计流量并设置告警
统计每分钟的流量,当最近的流量出现暴跌时,触发报警。 由于在最近的一分钟内,统计的数据不是一个完整分钟的,所以需要除以greatest(max(__time__) - min(__time__),1)
进行归一化,统计每个分钟内的流量均值。
* | SELECT SUM(inflow) / greatest(max(__time__) - min(__time__),1) as inflow_per_minute, date_trunc('minute',__time__) as minute group by minute
计算不同数据区间的平均延时
按照数据区间分桶,在每个桶内计算平均延时。
* | select avg(latency) as latency , case when originSize < 5000 then 's1' when originSize < 20000 then 's2' when originSize < 500000 then 's3' when originSize < 100000000 then 's4' else 's5' end as os group by os
返回不同结果的百分比
返回不同部门的count结果,及其所占百分比。该query结合了子查询、窗口函数。其中sum(c) over()
表示计算所有行的和。
* | select department, c*1.0/ sum(c) over () from(select count(1) as c, department from log group by department)
统计满足条件的个数
在URL路径中,我们需要根据URL不同的特征来计数,这种情况可以使用CASE WHEN语法,但还有个更简单的语法是count_if。
* | select count_if(uri like '%login') as login_num, count_if(uri like '%register') as register_num, date_format(date_trunc('minute', __time__), '%m-%d %H:%i') as time group by time order by time limit 100
文档内容是否对您有帮助?