本文介绍了如何使用AnalyticDB来搭建声纹比对系统。
背景信息
近年来,随着人工智能对传统行业的赋能改造,越来越多的基于人工智能的业务解决方案被提出来,声纹识别在保险行业中的身份认证便是一个很好的例子。声纹识别是根据说话人发音的生理和行为特征,自动识别说话人身份的一种生物识别技术,对应在电话销售场景下,它主要解决以下安全问题:一方面,有不法分子窃取电话销售人员账号信息,非法获取客户个人信息资料并进行贩卖、泄露,严重侵犯了公民个人的信息隐私权,另一方面,部分行业从业人员利用一些规则漏洞,通过套保、骗保等非法手段实施金融诈骗。针对这些安全问题,可以通过实时声纹认证加以解决,以电话销售人员为监管核心,利用每个人独一无二的声纹进行严密的个人身份认证,保证电话销售人员对接客户时是本人注册登录,规范电销人员行为,从源头上有效规避信息泄露、漏洞利用等风险。
声纹识别原理

上图是端对端的深度学习训练和推理过程。对比传统声纹识别模型,我们的模型在实际使用中优势明显,在用户远程身份验证场景,通过注册用户说一段话,即可轻松快速的确认注册用户身份,识别准确率达到95%以上,秒级响应,实时声纹核身。下面简要介绍我们模型的特点。
- 度量学习
- 实验发现,在声纹识别中采用softmax进行网络训练 ,用余弦相似度的测试性能往往不如传统声纹识别模型,尤其是在鲁棒性上。分析发现[6]基于softmax的分类训练,为了得到更小的loss,优化器会增大一些 easy samples 的 L2 length,减小 hard examples 的L2
length,导致这些样本并没有充分学习,特征呈现放射状,以MNIST识别任务为例,基于softmax学到的特征分布如图3(a)所示. 同类别特征分布并不聚拢,在L2
长度上拉长,呈放射状,且每个类别的间距并不大,在verification的任务中,会导致相邻的两个类别得分很高。为了达到类内聚拢,类间分散的效果,我们研究了在图像领域中应用较为成功的几种softmax变种,包括AM-softmax[4],arcsoftmax[5]等,从图3(b)可以看到,基于margin的softmax,相比纯softmax,类间的分散程度更大,且类内特征更聚拢,对声纹1:1比对和1:N搜索的任务友好。
- 噪音鲁棒性
- 在特征提取时,对于简单加性噪音,我们提出了基于功率谱减法,实现噪音抑制;对于其他复杂噪音,我们提出了基于降噪自动编码器的噪音补偿模型,将带噪语音特征映射到干净语音特征,实现噪音消除。
- 短音频鲁棒性
- 为了提高短音频鲁棒性,我们提出了基于短时帧级别的模型训练机制,使模型能够在极短的语音时长(约0.5秒)下即可完成声纹识别。在此基础上,我们在模型训练中引入了更多高阶的音频统计信息和正则化方法,进一步提升了模型在短语音条件下(2~3秒)的识别精度。
如何使用AnalyticDB搭建声纹比对系统
参考文献
[1] Heigold G, Moreno I, Bengio S, et al. End-to-end text-dependent speaker verification[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016: 5115-5119.
[2]Li C, Ma X, Jiang B, et al. Deep speaker: an end-to-end neural speaker embedding system[J]. arXiv preprint arXiv:1705.02304, 2017.
[3] Snyder D, Garcia-Romero D, Sell G, et al. X-vectors: Robust den embeddings for speaker recognition[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018: 5329-5333.
[4] Wang F, Cheng J, Liu W, et al. Additive margin softmax for face verification[J]. IEEE Signal Processing Letters, 2018, 25(7): 926-930.
[5] Dang J, Guo J, Xue N, et al. Arc face: Additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 4690-4699.
[6] Ranjan R, Castillo C D, Chellappa R. L2-constrained softmax loss for discriminative face verification[J]. arXiv preprint arXiv:1703.09507, 2017.
在文档使用中是否遇到以下问题
更多建议
匿名提交