转换函数
本文档主要介绍了转换函数(Transformations)的语法结构、语法说明以及使用示例。
ABS()
返回field value的绝对值。
基本语法
SELECT ABS([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法说明
ABS(field_key)
:返回field key对应的field value的绝对值。
ABS(*)
:返回在measurement中每个field key对应的field value的绝对值。
ABS()
:支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。
基本语法示例1:计算指定field key对应的field value的绝对值
SELECT ABS("a") FROM "data" WHERE time >='2018-06-24T12:00:00Z' AND time <='2018-06-24T12:05:00Z'
name: data
time abs
-------
15298416000000000001.33909108671076
15298416600000000000.774984088561186
15298417200000000000.921037167720451
15298417800000000001.73880754843378
15298418400000000000.905980032168252
15298419000000000000.891164752631417
该查询返回measurement data
中field key a
对应的field value的绝对值。
基本语法示例2:计算measurement中每个field key对应的field value的绝对值
SELECT ABS(*) FROM "data" WHERE time >='2018-06-24T12:00:00Z' AND time <='2018-06-24T12:05:00Z'
name: data
time abs_a abs_b
--------------
15298416000000000001.339091086710760.163643058925645
15298416600000000000.7749840885611860.137034364053949
15298417200000000000.9210371677204510.482943221384294
15298417800000000001.738807548433780.0729732928756677
15298418400000000000.9059800321682521.77857552719844
15298419000000000000.8911647526314170.741147445214238
该查询返回measurement data
中每个存储数值的field key对应的field value的绝对值。measurement data
中有两个数值类型的field:a
和b
。
基本语法示例3:计算指定field key对应的field value的绝对值并包含多个子句
SELECT ABS("a") FROM "data" WHERE time >='2018-06-24T12:00:00Z' AND time <='2018-06-24T12:05:00Z' ORDER BY time DESC LIMIT 4 OFFSET 2
name: data
time abs
-------
15298417800000000001.73880754843378
15298417200000000000.921037167720451
15298416600000000000.774984088561186
15298416000000000001.33909108671076
该查询返回measurement data
中field key a
对应的field value的绝对值,它涵盖的时间范围在2018-06-24T12:00:00Z
和2018-06-24T12:05:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT ABS(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的绝对值。
ABS()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的绝对值
SELECT ABS(MEAN("a")) FROM "data" WHERE time >='2018-06-24T12:00:00Z' AND time <='2018-06-24T13:00:00Z' GROUP BY time(12m)
time abs
-------
15298416000000000000.3960977256302787
15298423200000000000.0010541018316373302
15298430400000000000.04494733240283668
15298437600000000000.2553594777104415
15298444800000000000.20382988543108413
15298452000000000000.790836070736962
该查询返回field key a
对应的每12分钟的时间间隔的field value的平均值的绝对值。
为了得到这些结果,TSDB For InfluxDB®首先计算field key a
对应的每12分钟的时间间隔的field value的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用ABS()
的情形一样:
SELECT MEAN("a") FROM "data" WHERE time >='2018-06-24T12:00:00Z' AND time <='2018-06-24T13:00:00Z' GROUP BY time(12m)
name: data
time mean
--------
1529841600000000000-0.3960977256302787
15298423200000000000.0010541018316373302
15298430400000000000.04494733240283668
15298437600000000000.2553594777104415
15298444800000000000.20382988543108413
1529845200000000000-0.790836070736962
然后,TSDB For InfluxDB®计算这些平均值的绝对值。
ACOS()
返回field value的反余弦(以弧度表示)。field value必须在-1和1之间。
基本语法
SELECT ACOS([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法说明
ACOS(field_key)
:返回field key对应的field value的反余弦。
ACOS(*)
:返回在measurement中每个field key对应的field value的反余弦。
ACOS()
:支持数据类型为int64和float64的field value,并且field value必须在-1和1之间。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用ACOS()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用如下模拟的公园占有率(相对于总空间)的数据。需要注意的重要事项是,所有的field value都在ACOS()
函数的可计算范围里(-1到1):
SELECT "of_capacity" FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z'
name: park_occupancy
time capacity
------------
2017-05-01T00:00:00Z0.83
2017-05-02T00:00:00Z0.3
2017-05-03T00:00:00Z0.84
2017-05-04T00:00:00Z0.22
2017-05-05T00:00:00Z0.17
2017-05-06T00:00:00Z0.77
2017-05-07T00:00:00Z0.64
2017-05-08T00:00:00Z0.72
2017-05-09T00:00:00Z0.16
示例1:计算指定field key对应的field value的反余弦
SELECT ACOS("of_capacity") FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z'
name: park_occupancy
time acos
--------
2017-05-01T00:00:00Z0.591688642426544
2017-05-02T00:00:00Z1.266103672779499
2017-05-03T00:00:00Z0.5735131044230969
2017-05-04T00:00:00Z1.3489818562981022
2017-05-05T00:00:00Z1.399966657665792
2017-05-06T00:00:00Z0.6919551751263169
2017-05-07T00:00:00Z0.8762980611683406
2017-05-08T00:00:00Z0.7669940078618667
2017-05-09T00:00:00Z1.410105673842986
该查询返回measurement park_occupancy
中field key of_capacity
对应的field value的反余弦。
示例2:计算measurement中每个field key对应的field value的反余弦
SELECT ACOS(*) FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z'
name: park_occupancy
time acos_of_capacity
-----------------
2017-05-01T00:00:00Z0.591688642426544
2017-05-02T00:00:00Z1.266103672779499
2017-05-03T00:00:00Z0.5735131044230969
2017-05-04T00:00:00Z1.3489818562981022
2017-05-05T00:00:00Z1.399966657665792
2017-05-06T00:00:00Z0.6919551751263169
2017-05-07T00:00:00Z0.8762980611683406
2017-05-08T00:00:00Z0.7669940078618667
2017-05-09T00:00:00Z1.410105673842986
该查询返回measurement park_occupancy
中每个存储数值的field key对应的field value的反余弦。measurement park_occupancy
中只有一个数值类型的field:of_capacity
。
示例3:计算指定field key对应的field value的反余弦并包含多个子句
SELECT ACOS("of_capacity") FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z' ORDER BY time DESC LIMIT 4 OFFSET 2
name: park_occupancy
time acos
--------
2017-05-07T00:00:00Z0.8762980611683406
2017-05-06T00:00:00Z0.6919551751263169
2017-05-05T00:00:00Z1.399966657665792
2017-05-04T00:00:00Z1.3489818562981022
该查询返回measurement park_occupancy
中field key of_capacity
对应的field value的反余弦,它涵盖的时间范围在2017-05-01T00:00:00Z
和2017-05-09T00:00:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT ACOS(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法说明
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的反余弦。
ACOS()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的反余弦
SELECT ACOS(MEAN("of_capacity")) FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z' GROUP BY time(3d)
name: park_occupancy
time acos
--------
2017-04-30T00:00:00Z0.9703630732143733
2017-05-03T00:00:00Z1.1483422646081407
2017-05-06T00:00:00Z0.7812981174487247
2017-05-09T00:00:00Z1.410105673842986
该查询返回field key of_capacity
对应的每三天的时间间隔的field value的平均值的反余弦。
为了得到这些结果,TSDB For InfluxDB®首先计算field key of_capacity
对应的每三天的时间间隔的field value的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用ACOS()
的情形一样:
SELECT MEAN("of_capacity") FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z' GROUP BY time(3d)
name: park_occupancy
time mean
--------
2017-04-30T00:00:00Z0.565
2017-05-03T00:00:00Z0.41
2017-05-06T00:00:00Z0.71
2017-05-09T00:00:00Z0.16
然后,TSDB For InfluxDB®计算这些平均值的反余弦。
ASIN()
返回field value的反正弦(以弧度表示)。field value必须在-1和1之间。
基本语法
SELECT ASIN([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法说明
ASIN(field_key)
:返回field key对应的field value的反正弦。
ASIN(*)
:返回在measurement中每个field key对应的field value的反正弦。
ASIN()
:支持数据类型为int64和float64的field value,并且field value必须在-1和1之间。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用ASIN()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用如下模拟的公园占有率(相对于总空间)的数据。需要注意的重要事项是,所有的field value都在ASIN()
函数的可计算范围里(-1到1):
> SELECT "of_capacity" FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z'
name: park_occupancy
time capacity
------------
2017-05-01T00:00:00Z0.83
2017-05-02T00:00:00Z0.3
2017-05-03T00:00:00Z0.84
2017-05-04T00:00:00Z0.22
2017-05-05T00:00:00Z0.17
2017-05-06T00:00:00Z0.77
2017-05-07T00:00:00Z0.64
2017-05-08T00:00:00Z0.72
2017-05-09T00:00:00Z0.16
示例1:计算指定field key对应的field value的反正弦
SELECT ASIN("of_capacity") FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z'
name: park_occupancy
time asin
--------
2017-05-01T00:00:00Z0.9791076843683526
2017-05-02T00:00:00Z0.3046926540153975
2017-05-03T00:00:00Z0.9972832223717997
2017-05-04T00:00:00Z0.22181447049679442
2017-05-05T00:00:00Z0.1708296691291045
2017-05-06T00:00:00Z0.8788411516685797
2017-05-07T00:00:00Z0.6944982656265559
2017-05-08T00:00:00Z0.8038023189330299
2017-05-09T00:00:00Z0.1606906529519106
该查询返回measurement park_occupancy
中field key of_capacity
对应的field value的反正弦。
示例2:计算measurement中每个field key对应的field value的反正弦
SELECT ASIN(*) FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z'
name: park_occupancy
time asin_of_capacity
-----------------
2017-05-01T00:00:00Z0.9791076843683526
2017-05-02T00:00:00Z0.3046926540153975
2017-05-03T00:00:00Z0.9972832223717997
2017-05-04T00:00:00Z0.22181447049679442
2017-05-05T00:00:00Z0.1708296691291045
2017-05-06T00:00:00Z0.8788411516685797
2017-05-07T00:00:00Z0.6944982656265559
2017-05-08T00:00:00Z0.8038023189330299
2017-05-09T00:00:00Z0.1606906529519106
该查询返回measurement park_occupancy
中每个存储数值的field key对应的field value的反正弦。measurement park_occupancy
中只有一个数值类型的field:of_capacity
。
示例3:计算指定field key对应的field value的反正弦并包含多个子句
SELECT ASIN("of_capacity") FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z' ORDER BY time DESC LIMIT 4 OFFSET 2
name: park_occupancy
time asin
--------
2017-05-07T00:00:00Z0.6944982656265559
2017-05-06T00:00:00Z0.8788411516685797
2017-05-05T00:00:00Z0.1708296691291045
2017-05-04T00:00:00Z0.22181447049679442
该查询返回measurement park_occupancy
中field key of_capacity
对应的field value的反正弦,它涵盖的时间范围在2017-05-01T00:00:00Z
和2017-05-09T00:00:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT ASIN(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法说明
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的反正弦。
ASIN()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的反正弦
> SELECT ASIN(MEAN("of_capacity")) FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z' GROUP BY time(3d)
name: park_occupancy
time asin
--------
2017-04-30T00:00:00Z0.6004332535805232
2017-05-03T00:00:00Z0.42245406218675574
2017-05-06T00:00:00Z0.7894982093461719
2017-05-09T00:00:00Z0.1606906529519106
该查询返回field key of_capacity
对应的每三天的时间间隔的field value的平均值的反正弦。
为了得到这些结果,TSDB For InfluxDB®首先计算field key of_capacity
对应的每三天的时间间隔的field value的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用ASIN()
的情形一样:
> SELECT MEAN("of_capacity") FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z' GROUP BY time(3d)
name: park_occupancy
time mean
--------
2017-04-30T00:00:00Z0.565
2017-05-03T00:00:00Z0.41
2017-05-06T00:00:00Z0.71
2017-05-09T00:00:00Z0.16
然后,TSDB For InfluxDB®计算这些平均值的反正弦。
ATAN()
SELECT ATAN([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法说明
ATAN(field_key)
:返回field key对应的field value的反正切。
ATAN(*)
:返回在measurement中每个field key对应的field value的反正切。
ATAN()
:支持数据类型为int64和float64的field value,并且field value必须在-1和1之间。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用ATAN()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用如下模拟的公园占有率(相对于总空间)的数据。需要注意的重要事项是,所有的field value都在ATAN()
函数的可计算范围里(-1到1):
> SELECT "of_capacity" FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z'
name: park_occupancy
time capacity
------------
2017-05-01T00:00:00Z0.83
2017-05-02T00:00:00Z0.3
2017-05-03T00:00:00Z0.84
2017-05-04T00:00:00Z0.22
2017-05-05T00:00:00Z0.17
2017-05-06T00:00:00Z0.77
2017-05-07T00:00:00Z0.64
2017-05-08T00:00:00Z0.72
2017-05-09T00:00:00Z0.16
示例1:计算指定field key对应的field value的反正切
SELECT ATAN("of_capacity") FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z'
name: park_occupancy
time atan
--------
2017-05-01T00:00:00Z0.6927678353971222
2017-05-02T00:00:00Z0.2914567944778671
2017-05-03T00:00:00Z0.6986598247214632
2017-05-04T00:00:00Z0.2165503049760893
2017-05-05T00:00:00Z0.16839015714752992
2017-05-06T00:00:00Z0.6561787179913948
2017-05-07T00:00:00Z0.5693131911006619
2017-05-08T00:00:00Z0.6240230529767568
2017-05-09T00:00:00Z0.1586552621864014
该查询返回measurement park_occupancy
中field key of_capacity
对应的field value的反正切。
示例2:计算measurement中每个field key对应的field value的反正切
SELECT ATAN(*) FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z'
name: park_occupancy
time atan_of_capacity
-----------------
2017-05-01T00:00:00Z0.6927678353971222
2017-05-02T00:00:00Z0.2914567944778671
2017-05-03T00:00:00Z0.6986598247214632
2017-05-04T00:00:00Z0.2165503049760893
2017-05-05T00:00:00Z0.16839015714752992
2017-05-06T00:00:00Z0.6561787179913948
2017-05-07T00:00:00Z0.5693131911006619
2017-05-08T00:00:00Z0.6240230529767568
2017-05-09T00:00:00Z0.1586552621864014
该查询返回measurement park_occupancy
中每个存储数值的field key对应的field value的反正切。measurement park_occupancy
中只有一个数值类型的field:of_capacity
。
示例3:计算指定field key对应的field value的反正切并包含多个子句
SELECT ATAN("of_capacity") FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z' ORDER BY time DESC LIMIT 4 OFFSET 2
name: park_occupancy
time atan
--------
2017-05-07T00:00:00Z0.5693131911006619
2017-05-06T00:00:00Z0.6561787179913948
2017-05-05T00:00:00Z0.16839015714752992
2017-05-04T00:00:00Z0.2165503049760893
该查询返回measurement park_occupancy
中field key of_capacity
对应的field value的反正切,它涵盖的时间范围在2017-05-01T00:00:00Z
和2017-05-09T00:00:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT ATAN(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法说明
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的反正切。
ATAN()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的反正切
> SELECT ATAN(MEAN("of_capacity")) FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z' GROUP BY time(3d)
name: park_occupancy
time atan
--------
2017-04-30T00:00:00Z0.5142865412694495
2017-05-03T00:00:00Z0.3890972310552784
2017-05-06T00:00:00Z0.6174058917515726
2017-05-09T00:00:00Z0.1586552621864014
该查询返回field key of_capacity
对应的每三天的时间间隔的field value的平均值的反正切。
为了得到这些结果,TSDB For InfluxDB®首先计算field key of_capacity
对应的每三天的时间间隔的field value的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用ATAN()
的情形一样:
> SELECT MEAN("of_capacity") FROM "park_occupancy" WHERE time >='2017-05-01T00:00:00Z' AND time <='2017-05-09T00:00:00Z' GROUP BY time(3d)
name: park_occupancy
time mean
--------
2017-04-30T00:00:00Z0.565
2017-05-03T00:00:00Z0.41
2017-05-06T00:00:00Z0.71
2017-05-09T00:00:00Z0.16
然后,TSDB For InfluxDB®计算这些平均值的反正切。
ATAN2()
y/x
的反正切。SELECT ATAN2([*|<field_key>| num ],[<field_key>| num ])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法说明
ATAN2(field_key_y, field_key_x)
返回field key “field_key_y”对应的field value除以field key “field_key_x”对应的field value的反正切。
ATAN2(*, field_key_x)<br />
返回在measurement中每个field key对应的field value除以field key “field_key_x”对应的field value的反正切。
ATAN2()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用ATAN2()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用如下模拟的飞行数据:
> SELECT "altitude_ft","distance_ft" FROM "flight_data" WHERE time >='2018-05-16T12:01:00Z' AND time <='2018-05-16T12:10:00Z'
name: flight_data
time altitude_ft distance_ft
--------------------------
2018-05-16T12:01:00Z102650094
2018-05-16T12:02:00Z254953576
2018-05-16T12:03:00Z403355208
2018-05-16T12:04:00Z557958579
2018-05-16T12:05:00Z706561213
2018-05-16T12:06:00Z858964807
2018-05-16T12:07:00Z1018067707
2018-05-16T12:08:00Z1177769819
2018-05-16T12:09:00Z1332172452
2018-05-16T12:10:00Z1488575881
示例一:计算field_key_y除以field_key_x的反正切
> SELECT ATAN2("altitude_ft","distance_ft") FROM "flight_data" WHERE time >='2018-05-16T12:01:00Z' AND time <='2018-05-16T12:10:00Z'
name: flight_data
time atan2
---------
2018-05-16T12:01:00Z0.020478631571881498
2018-05-16T12:02:00Z0.04754142349303296
2018-05-16T12:03:00Z0.07292147724575364
2018-05-16T12:04:00Z0.09495251193874832
2018-05-16T12:05:00Z0.11490822875441563
2018-05-16T12:06:00Z0.13176409347584003
2018-05-16T12:07:00Z0.14923587589682233
2018-05-16T12:08:00Z0.1671059946640312
2018-05-16T12:09:00Z0.18182893717409565
2018-05-16T12:10:00Z0.1937028631495223
该查询返回field key altitude_ft
对应的field value除以field key distance_ft
对应的field value的反正切。这两个field key都在measurement flight_data
中。
示例二:计算measurement中每个field key除以field_key_x的反正切
> SELECT ATAN2(*,"distance_ft") FROM "flight_data" WHERE time >='2018-05-16T12:01:00Z' AND time <='2018-05-16T12:10:00Z'
name: flight_data
time atan2_altitude_ft atan2_distance_ft
--------------------------------------
2018-05-16T12:01:00Z0.0204786315718814980.7853981633974483
2018-05-16T12:02:00Z0.047541423493032960.7853981633974483
2018-05-16T12:03:00Z0.072921477245753640.7853981633974483
2018-05-16T12:04:00Z0.094952511938748320.7853981633974483
2018-05-16T12:05:00Z0.114908228754415630.7853981633974483
2018-05-16T12:06:00Z0.131764093475840030.7853981633974483
2018-05-16T12:07:00Z0.149235875896822330.7853981633974483
2018-05-16T12:08:00Z0.16710599466403120.7853981633974483
2018-05-16T12:09:00Z0.181828937174095650.7853981633974483
2018-05-16T12:10:00Z0.193702863149522340.7853981633974483
该查询返回measurement flight_data
中每个存储数值的field key对应的field value除以field key distance_ft
对应的field value的反正切。measurement flight_data
中有两个数值类型的field:altitude_ft
和distance_ft
。
示例三:计算field value的反正切并包含多个子句
> SELECT ATAN2("altitude_ft","distance_ft") FROM "flight_data" WHERE time >='2018-05-16T12:01:00Z' AND time <='2018-05-16T12:10:00Z' ORDER BY time DESC LIMIT 4 OFFSET 2
name: flight_data
time atan2
---------
2018-05-16T12:08:00Z0.1671059946640312
2018-05-16T12:07:00Z0.14923587589682233
2018-05-16T12:06:00Z0.13176409347584003
2018-05-16T12:05:00Z0.11490822875441563
该查询返回field key altitude_ft
对应的field value除以field key distance_ft
对应的field value的反正切,它涵盖的时间范围在2018-05-16T12:10:00Z
和2018-05-16T12:10:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT ATAN2(<function()>,<function()>)[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法说明
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的反正切(ATAN2()
)。
ATAN2()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的反正切
> SELECT ATAN2(MEAN("altitude_ft"), MEAN("distance_ft")) FROM "flight_data" WHERE time >='2018-05-16T12:01:00Z' AND time <='2018-05-16T13:01:00Z' GROUP BY time(12m)
name: flight_data
time atan2
---------
2018-05-16T12:00:00Z0.133815587896842
2018-05-16T12:12:00Z0.2662716308351908
2018-05-16T12:24:00Z0.2958845306108965
2018-05-16T12:36:00Z0.23783439588429497
2018-05-16T12:48:00Z0.1906803720242831
2018-05-16T13:00:00Z0.17291511946158172
该查询返回field key altitude_ft
对应的field value的平均值除以field key distance_ft
对应的field value的平均值的反正切。平均值是按每12分钟的时间间隔计算的。
为了得到这些结果,TSDB For InfluxDB®首先计算field key altitude_ft
和distance_ft
对应的每12分钟的时间间隔的field value的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用ATAN2()
的情形一样:
> SELECT MEAN("altitude_ft"), MEAN("distance_ft") FROM "flight_data" WHERE time >='2018-05-16T12:01:00Z' AND time <='2018-05-16T13:01:00Z' GROUP BY time(12m)
name: flight_data
time mean mean_1
--------------
2018-05-16T12:00:00Z867464433.181818181816
2018-05-16T12:12:00Z26419.83333333333296865.25
2018-05-16T12:24:00Z40337.416666666664132326.41666666666
2018-05-16T12:36:00Z41149.583333333336169743.16666666666
2018-05-16T12:48:00Z41230.416666666664213600.91666666666
2018-05-16T13:00:00Z41184.5235799
然后,TSDB For InfluxDB®计算这些平均值的反正切。
CEIL()
返回大于指定值的最小整数。
基本语法
SELECT CEIL([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法说明
CEIL(field_key)
返回field key对应的大于field value的最小整数。
CEIL(*)
返回在measurement中每个field key对应的大于field value的最小整数。
CEIL()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用CEIL()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的大于field value的最小整数
> SELECT CEIL("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time ceil
--------
2015-08-18T00:00:00Z3
2015-08-18T00:06:00Z3
2015-08-18T00:12:00Z3
2015-08-18T00:18:00Z3
2015-08-18T00:24:00Z3
2015-08-18T00:30:00Z3
该查询返回measurement h2o_feet
中field key water_level
对应的大于field value的最小整数。
示例二:计算measurement中每个field key对应的大于field value的最小整数
> SELECT CEIL(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time ceil_water_level
--------------------
2015-08-18T00:00:00Z3
2015-08-18T00:06:00Z3
2015-08-18T00:12:00Z3
2015-08-18T00:18:00Z3
2015-08-18T00:24:00Z3
2015-08-18T00:30:00Z3
该查询返回measurement h2o_feet
中每个存储数值的field key对应的大于field value的最小整数。measurement h2o_feet
只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的大于field value的最小整数并包含多个子句
> SELECT CEIL("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time ceil
--------
2015-08-18T00:18:00Z3
2015-08-18T00:12:00Z3
2015-08-18T00:06:00Z3
2015-08-18T00:00:00Z3
该查询返回field key water_level
对应的大于field value的最小整数,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT CEIL(<function>([*|<field_key>|/<regular_expression>/]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后将CEIL()
应用于这些结果。
CEIL()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算大于平均值的最小整数
> SELECT CEIL(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time ceil
--------
2015-08-18T00:00:00Z3
2015-08-18T00:12:00Z3
2015-08-18T00:24:00Z3
该查询返回每12分钟的时间间隔对应的大于water_level
平均值的最小整数。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的大于water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用CEIL()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算大于这些平均值的最小整数。
COS()
SELECT COS([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法说明
COS(field_key)
返回field key对应的field value的余弦值。
COS(*)
返回在measurement中每个field key对应的field value的余弦值。
COS()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用COS()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的余弦值
> SELECT COS("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time cos
-------
2015-08-18T00:00:00Z-0.47345017433543124
2015-08-18T00:06:00Z-0.5185922462666872
2015-08-18T00:12:00Z-0.4414407189100776
2015-08-18T00:18:00Z-0.5271163912192579
2015-08-18T00:24:00Z-0.45306786455514825
2015-08-18T00:30:00Z-0.4619598230611262
该查询返回measurement h2o_feet
中field key water_level
对应的field value的余弦值。
示例二:计算measurement中每个field key对应的field value的余弦值
> SELECT COS(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time cos_water_level
-------------------
2015-08-18T00:00:00Z-0.47345017433543124
2015-08-18T00:06:00Z-0.5185922462666872
2015-08-18T00:12:00Z-0.4414407189100776
2015-08-18T00:18:00Z-0.5271163912192579
2015-08-18T00:24:00Z-0.45306786455514825
2015-08-18T00:30:00Z-0.4619598230611262
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的余弦值。measurement h2o_feet
中只有一个数值类型的field:water_level
。
COS()
SELECT COS([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法说明
COS(field_key)
返回field key对应的field value的余弦值。
COS(*)
返回在measurement中每个field key对应的field value的余弦值。
COS()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用COS()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的余弦值
> SELECT COS("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time cos
-------
2015-08-18T00:00:00Z-0.47345017433543124
2015-08-18T00:06:00Z-0.5185922462666872
2015-08-18T00:12:00Z-0.4414407189100776
2015-08-18T00:18:00Z-0.5271163912192579
2015-08-18T00:24:00Z-0.45306786455514825
2015-08-18T00:30:00Z-0.4619598230611262
该查询返回measurement h2o_feet
中field key water_level
对应的field value的余弦值。
示例二:计算measurement中每个field key对应的field value的余弦值
> SELECT COS(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time cos_water_level
-------------------
2015-08-18T00:00:00Z-0.47345017433543124
2015-08-18T00:06:00Z-0.5185922462666872
2015-08-18T00:12:00Z-0.4414407189100776
2015-08-18T00:18:00Z-0.5271163912192579
2015-08-18T00:24:00Z-0.45306786455514825
2015-08-18T00:30:00Z-0.4619598230611262
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的余弦值。measurement h2o_feet
中只有一个数值类型的field:water_level
。
高级语法
SELECT COS(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的余弦值。
COS()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的余弦值
> SELECT COS(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time cos
-------
2015-08-18T00:00:00Z-0.49618891270599885
2015-08-18T00:12:00Z-0.4848605136571181
2015-08-18T00:24:00Z-0.4575195627907578
该查询返回field key water_level
对应的每12分钟的时间间隔的field value的平均值的余弦值。
为了得到这些结果,TSDB For InfluxDB®首先计算field key water_level
对应的每12分钟的时间间隔的field value的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用COS()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的余弦值。
CUMULATIVE_SUM()
返回field value的累积总和。
基本语法
SELECT CUMULATIVE_SUM([*|<field_key>|/<regular_expression>/])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法说明
CUMULATIVE_SUM(field_key)
返回field key对应的field value的累积总和。
CUMULATIVE_SUM(/regular_expression/)
返回与正则表达式匹配的每个field key对应的field value的累积总和。
CUMULATIVE_SUM(*)
返回在measurement中每个field key对应的field value的累积总和。
CUMULATIVE_SUM()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用CUMULATIVE_SUM()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的累积总和
> SELECT CUMULATIVE_SUM("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time cumulative_sum
------------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z4.18
2015-08-18T00:12:00Z6.208
2015-08-18T00:18:00Z8.334
2015-08-18T00:24:00Z10.375
2015-08-18T00:30:00Z12.426
该查询返回measurement h2o_feet
中field key water_level
对应的field value的累积总和。
示例二:计算measurement中每个field key对应的field value的累积总和
> SELECT CUMULATIVE_SUM(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time cumulative_sum_water_level
------------------------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z4.18
2015-08-18T00:12:00Z6.208
2015-08-18T00:18:00Z8.334
2015-08-18T00:24:00Z10.375
2015-08-18T00:30:00Z12.426
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的累积总和。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算与正则表达式匹配的每个field key对应的field value的累积总和
> SELECT CUMULATIVE_SUM(/water/) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time cumulative_sum_water_level
------------------------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z4.18
2015-08-18T00:12:00Z6.208
2015-08-18T00:18:00Z8.334
2015-08-18T00:24:00Z10.375
2015-08-18T00:30:00Z12.426
该查询返回measurement h2o_feet
中每个存储数值并包含单词water
的field key对应的field value的累积总和。
示例四:计算指定field key对应的field value的累积总和并包含多个子句
> SELECT CUMULATIVE_SUM("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time cumulative_sum
------------------
2015-08-18T00:18:00Z6.218
2015-08-18T00:12:00Z8.246
2015-08-18T00:06:00Z10.362
2015-08-18T00:00:00Z12.426
该查询返回measurement h2o_feet
中field key water_level
对应的field value的累积总和,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT CUMULATIVE_SUM(<function>([*|<field_key>|/<regular_expression>/]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的累积总和。
CUMULATIVE_SUM()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的累积总和
> SELECT CUMULATIVE_SUM(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time cumulative_sum
------------------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z4.167
2015-08-18T00:24:00Z6.213
该查询返回field key water_level
对应的每12分钟的时间间隔的field value的平均值的累积总和。
为了得到这些结果,TSDB For InfluxDB®首先计算field key water_level
对应的每12分钟的时间间隔的field value的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用CUMULATIVE_SUM()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的累积总和。最终查询结果中的第二个数据点(4.167
)是2.09
和2.077
的总和,第三个数据点(6.213
)是2.09
、2.077
和2.0460000000000003
的总和。
DERIVATIVE()
返回field value之间的变化率,即导数。
基本语法
SELECT DERIVATIVE([*|<field_key>|/<regular_expression>/][,<unit>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
TSDB For InfluxDB®计算field value之间的差值,并将这些结果转换为每个unit
的变化率。参数unit
的值是一个整数,后跟一个时间单位。这个参数是可选的,不是必须要有的。如果查询没有指定unit
的值,那么unit
默认为一秒(1s
)。
DERIVATIVE(field_key)
返回field key对应的field value的变化率。
DERIVATIVE(/regular_expression/)
返回与正则表达式匹配的每个field key对应的field value的变化率。
DERIVATIVE(*)
返回在measurement中每个field key对应的field value的变化率。
DERIVATIVE()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用DERIVATIVE()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的导数
> SELECT DERIVATIVE("water_level") FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z'
name: h2o_feet
time derivative
--------------
2015-08-18T00:06:00Z0.00014444444444444457
2015-08-18T00:12:00Z-0.00024444444444444465
2015-08-18T00:18:00Z0.0002722222222222218
2015-08-18T00:24:00Z-0.000236111111111111
2015-08-18T00:30:00Z2.777777777777842e-05
该查询返回measurement h2o_feet
中field key water_level
对应的field value的每秒变化率。
第一个结果(0.00014444444444444457
)是原始数据中前两个field value在一秒内的变化率。TSDB For InfluxDB®计算两个field value之间的差值,并将该值标准化为一秒的变化率:
(2.116-2.064)/(360s/1s)
------------------------
||
| the difference between the field values' timestamps / the default unit
second field value - first field value
示例二:计算指定field key对应的field value的导数并指定unit
> SELECT DERIVATIVE("water_level",6m) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z'
name: h2o_feet
time derivative
--------------
2015-08-18T00:06:00Z0.052000000000000046
2015-08-18T00:12:00Z-0.08800000000000008
2015-08-18T00:18:00Z0.09799999999999986
2015-08-18T00:24:00Z-0.08499999999999996
2015-08-18T00:30:00Z0.010000000000000231
该查询返回measurement h2o_feet
中field key water_level
对应的field value的每六分钟的变化率。
第一个结果(0.052000000000000046
)是原始数据中前两个field value在六分钟内的变化率。TSDB For InfluxDB®计算两个field value之间的差值,并将该值标准化为六分钟的变化率:
(2.116-2.064)/(6m/6m)
------------------------
||
| the difference between the field values' timestamps / the specified unit
second field value - first field value
示例三:计算measurement中每个field key对应的field value的导数并指定unit
> SELECT DERIVATIVE(*,3m) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z'
name: h2o_feet
time derivative_water_level
--------------------------
2015-08-18T00:06:00Z0.026000000000000023
2015-08-18T00:12:00Z-0.04400000000000004
2015-08-18T00:18:00Z0.04899999999999993
2015-08-18T00:24:00Z-0.04249999999999998
2015-08-18T00:30:00Z0.0050000000000001155
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的每三分钟的变化率。measurement h2o_feet
中只有一个数值类型的field:water_level
。
第一个结果(0.026000000000000023
)是原始数据中前两个field value在三分钟内的变化率。TSDB For InfluxDB®计算两个field value之间的差值,并将该值标准化为三分钟的变化率:
(2.116-2.064)/(6m/3m)
------------------------
||
| the difference between the field values' timestamps / the specified unit
second field value - first field value
示例四:计算与正则表达式匹配的每个field key对应的field value的导数并指定unit
> SELECT DERIVATIVE(/water/,2m) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z'
name: h2o_feet
time derivative_water_level
--------------------------
2015-08-18T00:06:00Z0.01733333333333335
2015-08-18T00:12:00Z-0.02933333333333336
2015-08-18T00:18:00Z0.03266666666666662
2015-08-18T00:24:00Z-0.02833333333333332
2015-08-18T00:30:00Z0.0033333333333334103
该查询返回measurement h2o_feet
中每个存储数值并包含单词water
的field key对应的field value的每两分钟的变化率。measurement h2o_feet
中只有一个数值类型的field:water_level
。
第一个结果(0.01733333333333335
)是原始数据中前两个field value在两分钟内的变化率。TSDB For InfluxDB®计算两个field value之间的差值,并将该值标准化为两分钟的变化率:
(2.116-2.064)/(6m/2m)
------------------------
||
| the difference between the field values' timestamps / the specified unit
second field value - first field value
示例五:计算指定field key对应的field value的导数并包含多个子句
> SELECT DERIVATIVE("water_level") FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' ORDER BY time DESC LIMIT 1 OFFSET 2
name: h2o_feet
time derivative
--------------
2015-08-18T00:12:00Z-0.0002722222222222218
该查询返回measurement h2o_feet
中field key water_level
对应的field value的每秒变化率,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为1,并将返回的数据点偏移两个(即前两个数据点不返回)。
唯一的结果(-0.0002722222222222218
)是原始数据中前两个field value在一秒内的变化率。TSDB For InfluxDB®计算两个field value之间的差值,并将该值标准化为一秒的变化率:
(2.126-2.028)/(360s/1s)
------------------------
||
| the difference between the field values' timestamps / the default unit
second field value - first field value
高级语法
SELECT DERIVATIVE(<function>([*|<field_key>|/<regular_expression>/])[,<unit>])[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的导数。
参数unit
的值是一个整数,后跟一个时间单位。这个参数是可选的,不是必须要有的。如果查询没有指定unit
的值,那么unit
默认为GROUP BY time()
的时间间隔。请注意,这里unit
的默认值跟基本语法中unit
的默认值不一样。
DERIVATIVE()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例
示例一:计算平均值的导数
> SELECT DERIVATIVE(MEAN("water_level")) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' GROUP BY time(12m)
name: h2o_feet
time derivative
--------------
2015-08-18T00:12:00Z-0.0129999999999999
2015-08-18T00:24:00Z-0.030999999999999694
该查询返回field key water_level
对应的每12分钟的时间间隔的field value的平均值的每12分钟变化率。
为了得到这些结果,TSDB For InfluxDB®首先计算field key water_level
对应的每12分钟的时间间隔的field value的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用DERIVATIVE()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的每12分钟的变化率。第一个结果(-0.0129999999999999
)是原始数据中前两个field value在12分钟内的变化率。TSDB For InfluxDB®计算两个field value之间的差值,并将该值标准化为12分钟的变化率:
(2.077-2.09)/(12m/12m)
-----------------------
||
| the difference between the field values' timestamps / the default unit
second field value - first field value
示例二:计算平均值的导数并指定unit
> SELECT DERIVATIVE(MEAN("water_level"),6m) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' GROUP BY time(12m)
name: h2o_feet
time derivative
--------------
2015-08-18T00:12:00Z-0.00649999999999995
2015-08-18T00:24:00Z-0.015499999999999847
该查询返回field key water_level
对应的每12分钟的时间间隔的field value的平均值的每六分钟变化率。
为了得到这些结果,TSDB For InfluxDB®首先计算field key water_level
对应的每12分钟的时间间隔的field value的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用DERIVATIVE()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的每六分钟的变化率。第一个结果(-0.00649999999999995
)是原始数据中前两个field value在六分钟内的变化率。TSDB For InfluxDB®计算两个field value之间的差值,并将该值标准化为六分钟的变化率:
(2.077-2.09)/(12m/6m)
-----------------------
||
| the difference between the field values' timestamps / the specified unit
second field value - first field value
DIFFERENCE()
返回field value之间的差值。
基本语法
SELECT DIFFERENCE([*|<field_key>|/<regular_expression>/])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
DIFFERENCE(field_key)
返回field key对应的field value的差值。
DIFFERENCE(/regular_expression/)
返回与正则表达式匹配的每个field key对应的field value的差值。
DIFFERENCE(*)
返回在measurement中每个field key对应的field value的差值。
DIFFERENCE()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用DIFFERENCE()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的差值
> SELECT DIFFERENCE("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time difference
--------------
2015-08-18T00:06:00Z0.052000000000000046
2015-08-18T00:12:00Z-0.08800000000000008
2015-08-18T00:18:00Z0.09799999999999986
2015-08-18T00:24:00Z-0.08499999999999996
2015-08-18T00:30:00Z0.010000000000000231
该查询返回measurement h2o_feet
中field key water_level
对应的field value之间的差值。
示例二:计算measurement中每个field key对应的field value的差值
> SELECT DIFFERENCE(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time difference_water_level
--------------------------
2015-08-18T00:06:00Z0.052000000000000046
2015-08-18T00:12:00Z-0.08800000000000008
2015-08-18T00:18:00Z0.09799999999999986
2015-08-18T00:24:00Z-0.08499999999999996
2015-08-18T00:30:00Z0.010000000000000231
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value之间的差值。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算与正则表达式匹配的每个field key对应的field value的差值
> SELECT DIFFERENCE(/water/) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time difference_water_level
--------------------------
2015-08-18T00:06:00Z0.052000000000000046
2015-08-18T00:12:00Z-0.08800000000000008
2015-08-18T00:18:00Z0.09799999999999986
2015-08-18T00:24:00Z-0.08499999999999996
2015-08-18T00:30:00Z0.010000000000000231
该查询返回measurement h2o_feet
中每个存储数值并包含单词water
的field key对应的field value之间的差值。
示例四:计算指定field key对应的field value的差值并包含多个子句
> SELECT DIFFERENCE("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 2 OFFSET 2
name: h2o_feet
time difference
--------------
2015-08-18T00:12:00Z-0.09799999999999986
2015-08-18T00:06:00Z0.08800000000000008
该查询返回measurement h2o_feet
中field key water_level
对应的field value之间的差值,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为2,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT DIFFERENCE(<function>([*|<field_key>|/<regular_expression>/]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果之间的差值。
DIFFERENCE()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算最大值之间的差值
> SELECT DIFFERENCE(MAX("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time difference
--------------
2015-08-18T00:12:00Z0.009999999999999787
2015-08-18T00:24:00Z-0.07499999999999973
该查询返回field key water_level
对应的每12分钟的时间间隔的field value的最大值之间的差值。
为了得到这些结果,TSDB For InfluxDB®首先计算field key water_level
对应的每12分钟的时间间隔的field value的最大值。这一步跟同时使用MAX()
函数和GROUP BY time()
子句、但不使用DIFFERENCE()
的情形一样:
> SELECT MAX("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time max
-------
2015-08-18T00:00:00Z2.116
2015-08-18T00:12:00Z2.126
2015-08-18T00:24:00Z2.051
然后,TSDB For InfluxDB®计算这些最大值之间的差值。最终查询结果中的第一个数据点(0.009999999999999787
)是2.126
和2.116
的差,第二个数据点(-0.07499999999999973
)是2.051
和2.126
的差。
ELAPSED()
返回field value的时间戳之间的差值。
语法
SELECT ELAPSED([*|<field_key>|/<regular_expression>/][,<unit>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
语法描述
TSDB For InfluxDB®计算时间戳之间的差值。参数unit
的值是一个整数,后跟一个时间单位,它决定了返回的差值的单位。这个参数是可选的,不是必须要有的。如果没有指定unit
的值,那么查询将返回以纳秒为单位的两个时间戳之间的差值。
ELAPSED(field_key)
返回field key对应的时间戳之间的差值。
ELAPSED(/regular_expression/)
返回与正则表达式匹配的每个field key对应的时间戳之间的差值。
ELAPSED(*)
返回在measurement中每个field key对应的时间戳之间的差值。
ELAPSED()
支持所有数据类型的field value。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:12:00Z'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
示例一:计算指定field key对应的field value之间的时间间隔
> SELECT ELAPSED("water_level") FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:12:00Z'
name: h2o_feet
time elapsed
-----------
2015-08-18T00:06:00Z360000000000
2015-08-18T00:12:00Z360000000000
该查询返回measurement h2o_feet
中field key water_level
对应的时间戳之间的差值(以纳秒为单位)。
示例二:计算指定field key对应的field value之间的时间间隔并指定unit
> SELECT ELAPSED("water_level",1m) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:12:00Z'
name: h2o_feet
time elapsed
-----------
2015-08-18T00:06:00Z6
2015-08-18T00:12:00Z6
该查询返回measurement h2o_feet
中field key water_level
对应的时间戳之间的差值()。
示例三:计算measurement中每个field key对应的field value之间的时间间隔并指定unit
> SELECT ELAPSED(*,1m) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:12:00Z'
name: h2o_feet
time elapsed_level description elapsed_water_level
------------------------------------------------
2015-08-18T00:06:00Z66
2015-08-18T00:12:00Z66
该查询返回measurement h2o_feet
中每个field key对应的时间戳之间的差值(以分钟为单位)。measurement h2o_feet
中有两个field key:level description
和water_level
。
示例四:计算与正则表达式匹配的每个field key对应的field value之间的时间间隔并指定unit
> SELECT ELAPSED(/level/,1s) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:12:00Z'
name: h2o_feet
time elapsed_level description elapsed_water_level
------------------------------------------------
2015-08-18T00:06:00Z360360
2015-08-18T00:12:00Z360360
该查询返回measurement h2o_feet
中每个包含单词level
的field key对应的时间戳之间的差值(以秒为单位)。
示例五:计算指定field key对应的field value之间的时间间隔并包含多个子句
> SELECT ELAPSED("water_level",1ms) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:12:00Z' ORDER BY time DESC LIMIT 1 OFFSET 1
name: h2o_feet
time elapsed
-----------
2015-08-18T00:00:00Z-360000
该查询返回measurement h2o_feet
中field key water_level
对应的时间戳之间的差值(以毫秒为单位),它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:12:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为1,并将返回的数据点偏移一个(即前一个数据点不返回)。
查询结果是负数;因为ORDER BY time DESC
子句按递减的顺序对时间戳进行排序,所以ELAPSED()
以相反的顺序计算时间戳的差值。
ELAPSED()的常见问题
问题一:ELAPSED()和大于经过时间的单位
如果unit
的值大于时间戳之间的差值,那么TSDB For InfluxDB®将会返回0
。
示例:measurement h2o_feet
中每六分钟有一个数据点。如果查询将unit
设置为一小时,TSDB For InfluxDB®将会返回0
:
> SELECT ELAPSED("water_level",1h) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:12:00Z'
name: h2o_feet
time elapsed
-----------
2015-08-18T00:06:00Z0
2015-08-18T00:12:00Z0
问题二:ELAPSED()和GROUP BY time()子句同时使用
ELAPSED()
函数支持GROUP BY time()
子句,但是查询结果不是特别有用。目前,如果ELAPSED()
查询包含一个嵌套的InfluxQL函数和一个GROUP BY time()
子句,那么只会返回指定GROUP BY time()
子句中的时间间隔。
GROUP BY time()
子句决定了查询结果中的时间戳:每个时间戳表示时间间隔的开始时间。该行为也适用于嵌套的selector函数(例如FIRST()
或MAX()
),而在其它的所有情况下,这些函数返回的是原始数据的特定时间戳。因为GROUP BY time()
子句会覆盖原始时间戳,所以ELAPSED()
始终返回与GROUP BY time()
的时间间隔相同的时间戳。
示例:下面代码块中的第一个查询尝试使用ELAPSED()
和GROUP BY time()
子句来查找最小的water_level
的值之间经过的时间(以分钟为单位)。查询的两个时间间隔都返回了12分钟。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔的water_level
的最小值。代码块中的第二个查询展示了这一步的结果。这一步跟同时使用MIN()
函数和GROUP BY time()
子句、但不使用ELAPSED()
的情形一样。请注意,第二个查询返回的时间戳间隔12分钟。在原始数据中,第一个结果(2.057
)发生在2015-08-18T00:42:00Z
,但是GROUP BY time()
子句覆盖了原始的时间戳。因为时间戳由GROUP BY time()
的时间间隔(而不是原始数据)决定,所以ELAPSED()
始终返回与GROUP BY time()的时间间隔相同的时间戳。
> SELECT ELAPSED(MIN("water_level"),1m) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:36:00Z' AND time <='2015-08-18T00:54:00Z' GROUP BY time(12m)
name: h2o_feet
time elapsed
-----------
2015-08-18T00:36:00Z12
2015-08-18T00:48:00Z12
> SELECT MIN("water_level") FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:36:00Z' AND time <='2015-08-18T00:54:00Z' GROUP BY time(12m)
name: h2o_feet
time min
-------
2015-08-18T00:36:00Z2.057<---Actually occurs at 2015-08-18T00:42:00Z
2015-08-18T00:48:00Z1.991
EXP()
返回field value的指数。
基本语法
SELECT EXP([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
EXP(field_key)
返回field key对应的field value的指数。
EXP(*)
返回在measurement中每个field key对应的field value的指数。
EXP()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用EXP()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用示例数据中的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的指数
> SELECT EXP("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time exp
-------
2015-08-18T00:00:00Z7.877416541092307
2015-08-18T00:06:00Z8.297879498060171
2015-08-18T00:12:00Z7.598873404088091
2015-08-18T00:18:00Z8.381274573459967
2015-08-18T00:24:00Z7.6983036546645645
2015-08-18T00:30:00Z7.775672892658607
该查询返回measurement h2o_feet
中field key water_level
对应的field value的指数。
示例二:计算measurement中每个field key对应的field value的指数
> SELECT EXP(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time exp_water_level
-------------------
2015-08-18T00:00:00Z7.877416541092307
2015-08-18T00:06:00Z8.297879498060171
2015-08-18T00:12:00Z7.598873404088091
2015-08-18T00:18:00Z8.381274573459967
2015-08-18T00:24:00Z7.6983036546645645
2015-08-18T00:30:00Z7.775672892658607
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的指数。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的field value的指数并包含多个子句
> SELECT EXP("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time exp
-------
2015-08-18T00:18:00Z8.381274573459967
2015-08-18T00:12:00Z7.598873404088091
2015-08-18T00:06:00Z8.297879498060171
2015-08-18T00:00:00Z7.877416541092307
该查询返回measurement h2o_feet
中field key water_level
对应的field value的指数,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT EXP(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的指数。
EXP()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的指数
> SELECT EXP(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time exp
-------
2015-08-18T00:00:00Z8.084915164305059
2015-08-18T00:12:00Z7.980491491670466
2015-08-18T00:24:00Z7.736891562315577
该查询返回每12分钟的时间间隔对应的water_level
的平均值的绝对值。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用EXP()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的指数。
FLOOR()
返回小于指定值的最大整数。
基本语法
SELECT FLOOR([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
FLOOR(field_key)
返回field key对应的小于field value的最大整数。
FLOOR(*)
返回在measurement中每个field key对应的小于field value的最大整数。
FLOOR()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用FLOOR()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的小于field value的最大整数
> SELECT FLOOR("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time floor
---------
2015-08-18T00:00:00Z2
2015-08-18T00:06:00Z2
2015-08-18T00:12:00Z2
2015-08-18T00:18:00Z2
2015-08-18T00:24:00Z2
2015-08-18T00:30:00Z2
该查询返回measurement h2o_feet
中field key water_level
对应的小于field value的最大整数。
示例二:计算measurement中每个field key对应的小于field value的最大整数
> SELECT FLOOR(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time floor_water_level
---------------------
2015-08-18T00:00:00Z2
2015-08-18T00:06:00Z2
2015-08-18T00:12:00Z2
2015-08-18T00:18:00Z2
2015-08-18T00:24:00Z2
2015-08-18T00:30:00Z2
该查询返回measurement h2o_feet
中每个存储数值的field key对应的小于field value的最大整数。measurement h2o_feet
只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的小于field value的最大整数并包含多个子句
> SELECT FLOOR("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time floor
---------
2015-08-18T00:18:00Z2
2015-08-18T00:12:00Z2
2015-08-18T00:06:00Z2
2015-08-18T00:00:00Z2
该查询返回field key water_level
对应的小于field value的最大整数,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT FLOOR(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后将FLOOR()
应用于这些结果。
FLOOR()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算小于平均值的最大整数
> SELECT FLOOR(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time floor
---------
2015-08-18T00:00:00Z2
2015-08-18T00:12:00Z2
2015-08-18T00:24:00Z2
该查询返回每12分钟的时间间隔对应的小于water_level
平均值的最大整数。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用FLOOR()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算小于这些平均值的最大整数。
LN()
返回field value的自然对数。
基本语法
SELECT LN([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
LN(field_key)
返回field key对应的field value的自然对数。
LN(*)
返回在measurement中每个field key对应的field value的自然对数。
LN()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用LN()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用示例数据中的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的自然对数
> SELECT LN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time ln
------
2015-08-18T00:00:00Z0.7246458476193163
2015-08-18T00:06:00Z0.749527513996053
2015-08-18T00:12:00Z0.7070500857289368
2015-08-18T00:18:00Z0.7542422799197561
2015-08-18T00:24:00Z0.7134398838277077
2015-08-18T00:30:00Z0.7183274790902436
该查询返回measurement h2o_feet
中field key water_level
对应的field value的自然对数。
示例二:计算measurement中每个field key对应的field value的自然对数
> SELECT LN(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time ln_water_level
------------------
2015-08-18T00:00:00Z0.7246458476193163
2015-08-18T00:06:00Z0.749527513996053
2015-08-18T00:12:00Z0.7070500857289368
2015-08-18T00:18:00Z0.7542422799197561
2015-08-18T00:24:00Z0.7134398838277077
2015-08-18T00:30:00Z0.7183274790902436
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的自然对数。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的field value的自然对数并包含多个子句
> SELECT EXP("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time exp
-------
2015-08-18T00:18:00Z8.381274573459967
2015-08-18T00:12:00Z7.598873404088091
2015-08-18T00:06:00Z8.297879498060171
2015-08-18T00:00:00Z7.877416541092307
该查询返回measurement h2o_feet
中field key water_level
对应的field value的自然对数,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT LN(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的自然对数。
LN()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的自然对数
> SELECT LN(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time ln
------
2015-08-18T00:00:00Z0.7371640659767196
2015-08-18T00:12:00Z0.7309245448939752
2015-08-18T00:24:00Z0.7158866675294349
该查询返回每12分钟的时间间隔对应的water_level
的平均值的自然对数。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用LN()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的自然对数。
LOG()
返回field value的以b
为底数的对数。
基本语法
SELECT LOG([*|<field_key>],<b>)[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
LOG(field_key, b)
返回field key对应的field value的以b
为底数的对数。
LOG(*, b)
返回在measurement中每个field key对应的field value的以b
为底数的对数。
LOG()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用LOG()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用示例数据中的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的以4为底数的对数
> SELECT LOG("water_level",4) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time log
-------
2015-08-18T00:00:00Z0.5227214853805835
2015-08-18T00:06:00Z0.5406698137259695
2015-08-18T00:12:00Z0.5100288261706268
2015-08-18T00:18:00Z0.5440707984345088
2015-08-18T00:24:00Z0.5146380911853161
2015-08-18T00:30:00Z0.5181637459088826
该查询返回measurement h2o_feet
中field key water_level
对应的field value的以4为底数的对数。
示例二:计算measurement中每个field key对应的field value的以4为底数的对数
> SELECT LOG(*,4) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time log_water_level
-------------------
2015-08-18T00:00:00Z0.5227214853805835
2015-08-18T00:06:00Z0.5406698137259695
2015-08-18T00:12:00Z0.5100288261706268
2015-08-18T00:18:00Z0.5440707984345088
2015-08-18T00:24:00Z0.5146380911853161
2015-08-18T00:30:00Z0.5181637459088826
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的以4为底数的对数。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的field value的以4为底数的对数并包含多个子句
> SELECT LOG("water_level",4) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time log
-------
2015-08-18T00:18:00Z0.5440707984345088
2015-08-18T00:12:00Z0.5100288261706268
2015-08-18T00:06:00Z0.5406698137259695
2015-08-18T00:00:00Z0.5227214853805835
该查询返回measurement h2o_feet
中field key water_level
对应的field value的以4为底数的对数,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT LOG(<function>([*|<field_key>]),<b>)[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的对数。
LOG()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的以4为底数的对数
> SELECT LOG(MEAN("water_level"),4) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time log
-------
2015-08-18T00:00:00Z0.531751471153079
2015-08-18T00:12:00Z0.5272506080912802
2015-08-18T00:24:00Z0.5164030725416209
该查询返回每12分钟的时间间隔对应的water_level
的平均值的以4为底数的对数。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用LOG()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的以4为底数的对数。
LOG2()
返回field value的以2为底数的对数。
基本语法
SELECT LOG2([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
LOG2(field_key)
返回field key对应的field value的以2为底数的对数。
LOG2(*)
返回在measurement中每个field key对应的field value的以2为底数的对数。
LOG2()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用LOG2()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用示例数据中的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的以2为底数的对数
> SELECT LOG2("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time log2
--------
2015-08-18T00:00:00Z1.045442970761167
2015-08-18T00:06:00Z1.081339627451939
2015-08-18T00:12:00Z1.0200576523412537
2015-08-18T00:18:00Z1.0881415968690176
2015-08-18T00:24:00Z1.0292761823706322
2015-08-18T00:30:00Z1.0363274918177652
该查询返回measurement h2o_feet
中field key water_level
对应的field value的以2为底数的对数。
示例二:计算measurement中每个field key对应的field value的以2为底数的对数
> SELECT LOG2(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time log2_water_level
--------------------
2015-08-18T00:00:00Z1.045442970761167
2015-08-18T00:06:00Z1.081339627451939
2015-08-18T00:12:00Z1.0200576523412537
2015-08-18T00:18:00Z1.0881415968690176
2015-08-18T00:24:00Z1.0292761823706322
2015-08-18T00:30:00Z1.0363274918177652
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的以2为底数的对数。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的field value的以2为底数的对数并包含多个子句
> SELECT LOG2("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time log2
--------
2015-08-18T00:18:00Z1.0881415968690176
2015-08-18T00:12:00Z1.0200576523412537
2015-08-18T00:06:00Z1.081339627451939
2015-08-18T00:00:00Z1.045442970761167
该查询返回measurement h2o_feet
中field key water_level
对应的field value的以2为底数的对数,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT LOG2(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的以2为底数的对数。
LOG2()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的以2为底数的对数
> SELECT LOG2(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time log2
--------
2015-08-18T00:00:00Z1.063502942306158
2015-08-18T00:12:00Z1.0545012161825604
2015-08-18T00:24:00Z1.0328061450832418
该查询返回每12分钟的时间间隔对应的water_level
的平均值的以2为底数的对数。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用LOG2()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的以2为底数的对数。
LOG10()
返回field value的以10为底数的对数。
基本语法
SELECT LOG10([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
LOG10(field_key)
返回field key对应的field value的以10为底数的对数。
LOG10(*)
返回在measurement中每个field key对应的field value的以10为底数的对数。
LOG10()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用LOG10()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用示例数据中的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的以10为底数的对数
> SELECT LOG10("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time log10
---------
2015-08-18T00:00:00Z0.3147096929551737
2015-08-18T00:06:00Z0.32551566336314813
2015-08-18T00:12:00Z0.3070679506612984
2015-08-18T00:18:00Z0.32756326018727794
2015-08-18T00:24:00Z0.3098430047160705
2015-08-18T00:30:00Z0.3119656603683663
该查询返回measurement h2o_feet
中field key water_level
对应的field value的以10为底数的对数。
示例二:计算measurement中每个field key对应的field value的以10为底数的对数
> SELECT LOG10(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time log10_water_level
---------------------
2015-08-18T00:00:00Z0.3147096929551737
2015-08-18T00:06:00Z0.32551566336314813
2015-08-18T00:12:00Z0.3070679506612984
2015-08-18T00:18:00Z0.32756326018727794
2015-08-18T00:24:00Z0.3098430047160705
2015-08-18T00:30:00Z0.3119656603683663
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的以10为底数的对数。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的field value的以10为底数的对数并包含多个子句
> SELECT LOG10("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time log10
---------
2015-08-18T00:18:00Z0.32756326018727794
2015-08-18T00:12:00Z0.3070679506612984
2015-08-18T00:06:00Z0.32551566336314813
2015-08-18T00:00:00Z0.3147096929551737
该查询返回measurement h2o_feet
中field key water_level
对应的field value的以10为底数的对数,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT LOG10(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的以10为底数的对数。
LOG10()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的以10为底数的对数
> SELECT LOG10(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time log10
---------
2015-08-18T00:00:00Z0.32014628611105395
2015-08-18T00:12:00Z0.3174364965350991
2015-08-18T00:24:00Z0.3109056293761414
该查询返回每12分钟的时间间隔对应的water_level
的平均值的以10为底数的对数。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用LOG10()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的以10为底数的对数。
MOVING_AVERAGE()
返回field value窗口的滚动平均值。
基本语法
SELECT MOVING_AVERAGE([*|<field_key>|/<regular_expression>/],<N>)[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
MOVING_AVERAGE()
计算包含N
个连续field value的窗口的滚动平均值。参数N
是一个整数,并且它是必须的。
MOVING_AVERAGE(field_key,N)
返回field key对应的N个field value的滚动平均值。
MOVING_AVERAGE(/regular_expression/,N)
返回与正则表达式匹配的每个field key对应的N个field value的滚动平均值。
MOVING_AVERAGE(*,N)
返回在measurement中每个field key对应的N个field value的滚动平均值。
MOVING_AVERAGE()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用MOVING_AVERAGE()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的滚动平均值
> SELECT MOVING_AVERAGE("water_level",2) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z'
name: h2o_feet
time moving_average
------------------
2015-08-18T00:06:00Z2.09
2015-08-18T00:12:00Z2.072
2015-08-18T00:18:00Z2.077
2015-08-18T00:24:00Z2.0835
2015-08-18T00:30:00Z2.0460000000000003
该查询返回measurement h2o_feet
中field key water_level
对应的窗口大小为两个field value的滚动平均值。第一个结果(2.09
)是原始数据中前两个field value的平均值:(2.064 + 2.116) / 2。第二个结果(2.072
)是原始数据中第二和第三个field value的平均值:(2.116 + 2.028) / 2。
示例二:计算measurement中每个field key对应的field value的滚动平均值
> SELECT MOVING_AVERAGE(*,3) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z'
name: h2o_feet
time moving_average_water_level
------------------------------
2015-08-18T00:12:00Z2.0693333333333332
2015-08-18T00:18:00Z2.09
2015-08-18T00:24:00Z2.065
2015-08-18T00:30:00Z2.0726666666666667
该查询返回measurement h2o_feet
中每个存储数值的field key对应的窗口大小为三个field value的滚动平均值。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算与正则表达式匹配的每个field key对应的field value的滚动平均值
> SELECT MOVING_AVERAGE(/level/,4) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z'
name: h2o_feet
time moving_average_water_level
------------------------------
2015-08-18T00:18:00Z2.0835
2015-08-18T00:24:00Z2.07775
2015-08-18T00:30:00Z2.0615
该查询返回measurement h2o_feet
中每个存储数值并包含单词level
的field key对应的窗口大小为四个field value的滚动平均值。
示例四:计算指定field key对应的field value的滚动平均值并包含多个子句
> SELECT MOVING_AVERAGE("water_level",2) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' ORDER BY time DESC LIMIT 2 OFFSET 3
name: h2o_feet
time moving_average
------------------
2015-08-18T00:06:00Z2.072
2015-08-18T00:00:00Z2.09
该查询返回measurement h2o_feet
中field key water_level
对应的窗口大小为两个field value的滚动平均值,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为2,并将返回的数据点偏移三个(即前三个数据点不返回)。
高级语法
SELECT MOVING_AVERAGE(<function>([*|<field_key>|/<regular_expression>/]), N )[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果之间的滚动平均值。
MOVING_AVERAGE()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算最大值的滚动平均值
> SELECT MOVING_AVERAGE(MAX("water_level"),2) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' GROUP BY time(12m)
name: h2o_feet
time moving_average
------------------
2015-08-18T00:12:00Z2.121
2015-08-18T00:24:00Z2.0885
该查询返回每12分钟的时间间隔对应的water_level
的最大值的窗口大小为两个值的滚动平均值。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的最大值。这一步跟同时使用MAX()
函数和GROUP BY time()
子句、但不使用MOVING_AVERAGE()
的情形一样:
> SELECT MAX("water_level") FROM "h2o_feet" WHERE "location"='santa_monica' AND time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' GROUP BY time(12m)
name: h2o_feet
time max
-------
2015-08-18T00:00:00Z2.116
2015-08-18T00:12:00Z2.126
2015-08-18T00:24:00Z2.051
然后,TSDB For InfluxDB®计算这些最大值的窗口大小为两个值的滚动平均值。最终查询结果中的第一个数据点(2.121
)是前两个最大值的平均值((2.116 + 2.126) / 2
)。
NON_NEGATIVE_DERIVATIVE()
返回field value之间的非负变化率。非负变化率包括正的变化率和等于0的变化率。
基本语法
SELECT NON_NEGATIVE_DERIVATIVE([*|<field_key>|/<regular_expression>/][,<unit>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
TSDB For InfluxDB®计算field value之间的差值,并将这些结果转换为每个unit
的变化率。参数unit
的值是一个整数,后跟一个时间单位。这个参数是可选的,不是必须要有的。如果查询没有指定unit
的值,那么unit
默认为一秒(1s
)。NON_NEGATIVE_DERIVATIVE()
只返回正的变化率和等于0的变化率。
NON_NEGATIVE_DERIVATIVE(field_key)
返回field key对应的field value的非负变化率。
NON_NEGATIVE_DERIVATIVE(/regular_expression/)
返回与正则表达式匹配的每个field key对应的field value的非负变化率。
NON_NEGATIVE_DERIVATIVE(*)
返回在measurement中每个field key对应的field value的非负变化率。
NON_NEGATIVE_DERIVATIVE()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用NON_NEGATIVE_DERIVATIVE()
和GROUP BY time()
子句。
基本语法示例
请查看DERIVATIVE()
文档中的示例,NON_NEGATIVE_DERIVATIVE()
跟DERIVATIVE()
的运行方式相同,但是NON_NEGATIVE_DERIVATIVE()
只返回查询结果中正的变化率和等于0的变化率。
高级语法
SELECT NON_NEGATIVE_DERIVATIVE(<function>([*|<field_key>|/<regular_expression>/])[,<unit>])[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的非负导数。
参数unit
的值是一个整数,后跟一个时间单位。这个参数是可选的,不是必须要有的。如果查询没有指定unit
的值,那么unit
默认为GROUP BY time()
的时间间隔。请注意,这里unit
的默认值跟基本语法中unit
的默认值不一样。NON_NEGATIVE_DERIVATIVE()
只返回正的变化率和等于0的变化率。
NON_NEGATIVE_DERIVATIVE()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例
请查看DERIVATIVE()
文档中的示例,NON_NEGATIVE_DERIVATIVE()
跟DERIVATIVE()
的运行方式相同,但是NON_NEGATIVE_DERIVATIVE()
只返回查询结果中正的变化率和等于0的变化率。
NON_NEGATIVE_DIFFERENCE()
返回field value之间的非负差值。非负差值包括正的差值和等于0的差值。
基本语法
SELECT NON_NEGATIVE_DIFFERENCE([*|<field_key>|/<regular_expression>/])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
NON_NEGATIVE_DIFFERENCE(field_key)
返回field key对应的field value的非负差值。
NON_NEGATIVE_DIFFERENCE(/regular_expression/)
返回与正则表达式匹配的每个field key对应的field value的非负差值。
NON_NEGATIVE_DIFFERENCE(*)
返回在measurement中每个field key对应的field value的非负差值。
NON_NEGATIVE_DIFFERENCE()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用NON_NEGATIVE_DIFFERENCE()
和GROUP BY time()
子句。
基本语法示例
请查看DIFFERENCE()
文档中的示例,NON_NEGATIVE_DIFFERENCE()
跟DIFFERENCE()
的运行方式相同,但是NON_NEGATIVE_DIFFERENCE()
只返回查询结果中正的差值和等于0的差值。
高级语法
SELECT NON_NEGATIVE_DIFFERENCE(<function>([*|<field_key>|/<regular_expression>/]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果之间的非负差值。
NON_NEGATIVE_DIFFERENCE()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例
请查看DIFFERENCE()
文档中的示例,NON_NEGATIVE_DIFFERENCE()
跟DIFFERENCE()
的运行方式相同,但是NON_NEGATIVE_DIFFERENCE()
只返回查询结果中正的差值和等于0的差值。
POW()
返回field value的x
次方。
基本语法
SELECT POW([*|<field_key>],<x>)[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
POW(field_key, x)
返回field key对应的field value的x
次方。
POW(*, x)
返回在measurement中每个field key对应的field value的x
次方。
POW()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用POW()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用示例数据中的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的4次方
> SELECT POW("water_level",4) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time pow
-------
2015-08-18T00:00:00Z18.148417929216
2015-08-18T00:06:00Z20.047612231936
2015-08-18T00:12:00Z16.914992230656004
2015-08-18T00:18:00Z20.429279055375993
2015-08-18T00:24:00Z17.352898193760993
2015-08-18T00:30:00Z17.69549197320101
该查询返回measurement h2o_feet
中field key water_level
对应的field value的4次方。
示例二:计算measurement中每个field key对应的field value的4次方
> SELECT POW(*,4) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time pow_water_level
-------------------
2015-08-18T00:00:00Z18.148417929216
2015-08-18T00:06:00Z20.047612231936
2015-08-18T00:12:00Z16.914992230656004
2015-08-18T00:18:00Z20.429279055375993
2015-08-18T00:24:00Z17.352898193760993
2015-08-18T00:30:00Z17.69549197320101
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的4次方。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的field value的4次方并包含多个子句
> SELECT POW("water_level",4) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time pow
-------
2015-08-18T00:18:00Z20.429279055375993
2015-08-18T00:12:00Z16.914992230656004
2015-08-18T00:06:00Z20.047612231936
2015-08-18T00:00:00Z18.148417929216
该查询返回measurement h2o_feet
中field key water_level
对应的field value的4次方,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT POW(<function>([*|<field_key>]),<x>)[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的x
次方。
POW()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的4次方
> SELECT POW(MEAN("water_level"),4) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time pow
-------
2015-08-18T00:00:00Z19.08029760999999
2015-08-18T00:12:00Z18.609983417041
2015-08-18T00:24:00Z17.523567165456008
该查询返回每12分钟的时间间隔对应的water_level
的平均值的4次方。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用POW()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的4次方。
ROUND()
返回指定值的四舍五入后的整数。
基本语法
SELECT ROUND([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
ROUND(field_key)
返回field key对应的field value四舍五入后的整数。
ROUND(*)
返回在measurement中每个field key对应的field value四舍五入后的整数。
ROUND()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用ROUND()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用示例数据中的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value四舍五入后的整数
> SELECT ROUND("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time round
---------
2015-08-18T00:00:00Z2
2015-08-18T00:06:00Z2
2015-08-18T00:12:00Z2
2015-08-18T00:18:00Z2
2015-08-18T00:24:00Z2
2015-08-18T00:30:00Z2
该查询返回measurement h2o_feet
中field key water_level
对应的field value四舍五入后的整数。
示例二:计算measurement中每个field key对应的field value四舍五入后的整数
> SELECT ROUND(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time round_water_level
---------------------
2015-08-18T00:00:00Z2
2015-08-18T00:06:00Z2
2015-08-18T00:12:00Z2
2015-08-18T00:18:00Z2
2015-08-18T00:24:00Z2
2015-08-18T00:30:00Z2
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value四舍五入后的整数。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的field value四舍五入后的整数并包含多个子句
> SELECT ROUND("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time round
---------
2015-08-18T00:18:00Z2
2015-08-18T00:12:00Z2
2015-08-18T00:06:00Z2
2015-08-18T00:00:00Z2
该查询返回measurement h2o_feet
中field key water_level
对应的field value四舍五入后的整数,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT ROUND(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果四舍五入后的整数。
ROUND()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值四舍五入后的整数
> SELECT ROUND(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time round
---------
2015-08-18T00:00:00Z2
2015-08-18T00:12:00Z2
2015-08-18T00:24:00Z2
该查询返回每12分钟的时间间隔对应的water_level
的平均值四舍五入后的整数。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用ROUND()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值四舍五入后的整数。
SIN()
返回field value的正弦值。
基本语法
SELECT SIN([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
SIN(field_key)
返回field key对应的field value的正弦值。
SIN(*)
返回在measurement中每个field key对应的field value的正弦值。
SIN()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用SIN()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的正弦值
> SELECT SIN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time sin
-------
2015-08-18T00:00:00Z0.8808206017241819
2015-08-18T00:06:00Z0.8550216851706579
2015-08-18T00:12:00Z0.8972904165810275
2015-08-18T00:18:00Z0.8497930984115993
2015-08-18T00:24:00Z0.8914760289023131
2015-08-18T00:30:00Z0.8869008523376968
该查询返回measurement h2o_feet
中field key water_level
对应的field value的正弦值。
示例二:计算measurement中每个field key对应的field value的正弦值
> SELECT SIN(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time sin_water_level
-------------------
2015-08-18T00:00:00Z0.8808206017241819
2015-08-18T00:06:00Z0.8550216851706579
2015-08-18T00:12:00Z0.8972904165810275
2015-08-18T00:18:00Z0.8497930984115993
2015-08-18T00:24:00Z0.8914760289023131
2015-08-18T00:30:00Z0.8869008523376968
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的正弦值。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的field value的正弦值并包含多个子句
> SELECT SIN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time sin
-------
2015-08-18T00:18:00Z0.8497930984115993
2015-08-18T00:12:00Z0.8972904165810275
2015-08-18T00:06:00Z0.8550216851706579
2015-08-18T00:00:00Z0.8808206017241819
该查询返回measurement h2o_feet
中field key water_level
对应的field value的正弦值,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT SIN(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的正弦值。
SIN()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的正弦值
> SELECT SIN(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time sin
-------
2015-08-18T00:00:00Z0.8682145834456126
2015-08-18T00:12:00Z0.8745914945253902
2015-08-18T00:24:00Z0.8891995555912935
该查询返回每12分钟的时间间隔对应的water_level
的平均值的正弦值。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用SIN()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的正弦值。
SQRT()
返回field value的平方根。
基本语法
SELECT SQRT([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
SQRT(field_key)
返回field key对应的field value的平方根。
SQRT(*)
返回在measurement中每个field key对应的field value的平方根。
SQRT()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用SQRT()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用”NOAA_water_database”数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的平方根
> SELECT SQRT("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time sqrt
--------
2015-08-18T00:00:00Z1.4366627996854378
2015-08-18T00:06:00Z1.4546477236774544
2015-08-18T00:12:00Z1.4240786495134319
2015-08-18T00:18:00Z1.4580809305384939
2015-08-18T00:24:00Z1.4286357128393508
2015-08-18T00:30:00Z1.4321312788986909
该查询返回measurement h2o_feet
中field key water_level
对应的field value的平方根。
示例二:计算measurement中每个field key对应的field value的平方根
> SELECT SQRT(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time sqrt_water_level
--------------------
2015-08-18T00:00:00Z1.4366627996854378
2015-08-18T00:06:00Z1.4546477236774544
2015-08-18T00:12:00Z1.4240786495134319
2015-08-18T00:18:00Z1.4580809305384939
2015-08-18T00:24:00Z1.4286357128393508
2015-08-18T00:30:00Z1.4321312788986909
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的平方根。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的field value的平方根并包含多个子句
> SELECT SQRT("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time sqrt
--------
2015-08-18T00:18:00Z1.4580809305384939
2015-08-18T00:12:00Z1.4240786495134319
2015-08-18T00:06:00Z1.4546477236774544
2015-08-18T00:00:00Z1.4366627996854378
该查询返回measurement h2o_feet
中field key water_level
对应的field value的平方根,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT SQRT(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的平方根。
SQRT()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的平方根
> SELECT SQRT(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time sqrt
--------
2015-08-18T00:00:00Z1.445683229480096
2015-08-18T00:12:00Z1.4411800720243115
2015-08-18T00:24:00Z1.430384563675098
该查询返回每12分钟的时间间隔对应的water_level
的平均值的平方根。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用SQRT()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的平方根。
TAN()
返回field value的正切值。
基本语法
SELECT TAN([*|<field_key>])[INTO_clause] FROM_clause [WHERE_clause][GROUP_BY_clause][ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
基本语法描述
TAN(field_key)
返回field key对应的field value的正切值。
TAN(*)
返回在measurement中每个field key对应的field value的正切值。
TAN()
支持数据类型为int64和float64的field value。
基本语法支持group by tags的GROUP BY
子句,但是不支持group by time。请查看高级语法章节了解如何使用TAN()
和GROUP BY time()
子句。
基本语法示例
下面的示例将使用NOAA_water_database
数据集的如下数据:
> SELECT "water_level" FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time water_level
---------------
2015-08-18T00:00:00Z2.064
2015-08-18T00:06:00Z2.116
2015-08-18T00:12:00Z2.028
2015-08-18T00:18:00Z2.126
2015-08-18T00:24:00Z2.041
2015-08-18T00:30:00Z2.051
示例一:计算指定field key对应的field value的正切值
> SELECT TAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time tan
-------
2015-08-18T00:00:00Z-1.8604293534384375
2015-08-18T00:06:00Z-1.6487359603347427
2015-08-18T00:12:00Z-2.0326408012302273
2015-08-18T00:18:00Z-1.6121545688343464
2015-08-18T00:24:00Z-1.9676434782626282
2015-08-18T00:30:00Z-1.9198657720074992
该查询返回measurement h2o_feet
中field key water_level
对应的field value的正切值。
示例二:计算measurement中每个field key对应的field value的正切值
> SELECT TAN(*) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica'
name: h2o_feet
time tan_water_level
-------------------
2015-08-18T00:00:00Z-1.8604293534384375
2015-08-18T00:06:00Z-1.6487359603347427
2015-08-18T00:12:00Z-2.0326408012302273
2015-08-18T00:18:00Z-1.6121545688343464
2015-08-18T00:24:00Z-1.9676434782626282
2015-08-18T00:30:00Z-1.9198657720074992
该查询返回measurement h2o_feet
中每个存储数值的field key对应的field value的正切值。measurement h2o_feet
中只有一个数值类型的field:water_level
。
示例三:计算指定field key对应的field value的正切值并包含多个子句
> SELECT TAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2
name: h2o_feet
time tan
-------
2015-08-18T00:18:00Z-1.6121545688343464
2015-08-18T00:12:00Z-2.0326408012302273
2015-08-18T00:06:00Z-1.6487359603347427
2015-08-18T00:00:00Z-1.8604293534384375
该查询返回measurement h2o_feet
中field key water_level
对应的field value的正切值,它涵盖的时间范围在2015-08-18T00:00:00Z
和2015-08-18T00:30:00Z
之间,并且以递减的时间戳顺序返回结果,同时,该查询将返回的数据点个数限制为4,并将返回的数据点偏移两个(即前两个数据点不返回)。
高级语法
SELECT TAN(<function>([*|<field_key>]))[INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause][LIMIT_clause][OFFSET_clause][SLIMIT_clause][SOFFSET_clause]
高级语法描述
高级语法需要一个GROUP BY time()
子句和一个嵌套的InfluxQL函数。查询首先计算在指定的GROUP BY time()
间隔内嵌套函数的结果,然后计算这些结果的正切值。
TAN()支持以下嵌套函数:
COUNT()
MEAN()
MEDIAN()
MODE()
SUM()
FIRST()
LAST()
MIN()
MAX()
PERCENTILE()
高级语法示例:计算平均值的正弦值
> SELECT TAN(MEAN("water_level")) FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time tan
-------
2015-08-18T00:00:00Z-1.7497661902817365
2015-08-18T00:12:00Z-1.8038002062256624
2015-08-18T00:24:00Z-1.9435224805850773
该查询返回每12分钟的时间间隔对应的water_level
的平均值的正切值。
为了得到这些结果,TSDB For InfluxDB®首先计算每12分钟的时间间隔对应的water_level
的平均值。这一步跟同时使用MEAN()
函数和GROUP BY time()
子句、但不使用TAN()
的情形一样:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >='2015-08-18T00:00:00Z' AND time <='2015-08-18T00:30:00Z' AND "location"='santa_monica' GROUP BY time(12m)
name: h2o_feet
time mean
--------
2015-08-18T00:00:00Z2.09
2015-08-18T00:12:00Z2.077
2015-08-18T00:24:00Z2.0460000000000003
然后,TSDB For InfluxDB®计算这些平均值的正切值。