文档

CDP集群高安全Kerberos+Ranger使用

更新时间:
一键部署

本章节将为您介绍Kerberos、Ranger的使用过程。

HDFS

  1. 开始,在没有权限的情况下,执行以下命令。

    [root@cdp-utility-1 ~]# hdfs dfs -ls /
image.png
  1. 使用fayson用户运行MapReduce任务及操作Hive,需要在集群所有节点创建fayson用户。

    1. 使用kadmin创建一个fayson的principal。

      [root@cdp-utility-1 30-hdfs-JOURNALNODE]# kadmin.local 
      Authenticating as principal root/admin@BDPHTSEC.COM with password.
      kadmin.local:  addprinc fayson
      WARNING: no policy specified for fayson@BDPHTSEC.COM; defaulting to no policy
      Enter password for principal "fayson@BDPHTSEC.COM": 
      Re-enter password for principal "fayson@BDPHTSEC.COM": 
      Principal "fayson@BDPHTSEC.COM" created.
      kadmin.local:  exit
      image.png
    2. 在所有的节点添加用户fayson用户。

      useradd -p `openssl passwd -1 -salt 'cloudera' cloudera` fayson
    3. /var/run/cloudera-scm-agent/process/下对应的角色目录下,找每个角色前ID最大的,这是当前存活的会话可以找到对应的keytab。

      ls /var/run/cloudera-scm-agent/process/
      image.png
    4. 进入到hdfs的最新目录。

      cd /var/run/cloudera-scm-agent/process/108-hdfs-DATANODE/
      image.png
    5. 查看hdfs.keytab认证的kdc。

      klist -kt  hdfs.keytab 
      image.png
    6. 执行Hadoop作业。

      hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar pi 10 1

      [root@cdp-utility-1 30-hdfs-JOURNALNODE]# hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar pi 10 1
      WARNING: Use "yarn jar" to launch YARN applications.
      Number of Maps  = 10
      Samples per Map = 1
      Wrote input for Map #0
      Wrote input for Map #1
      Wrote input for Map #2
      Wrote input for Map #3
      Wrote input for Map #4
      Wrote input for Map #5
      Wrote input for Map #6
      Wrote input for Map #7
      Wrote input for Map #8
      Wrote input for Map #9
      Starting Job
      21/09/06 16:47:39 INFO hdfs.DFSClient: Created token for fayson: HDFS_DELEGATION_TOKEN owner=fayson@BDPHTSEC.COM, renewer=yarn, realUser=, issueDate=1630918059144, maxDate=1631522859144, sequenceNumber=4, masterKeyId=2 on ha-hdfs:CDP-1
      21/09/06 16:47:39 INFO security.TokenCache: Got dt for hdfs://CDP-1; Kind: HDFS_DELEGATION_TOKEN, Service: ha-hdfs:CDP-1, Ident: (token for fayson: HDFS_DELEGATION_TOKEN owner=fayson@BDPHTSEC.COM, renewer=yarn, realUser=, issueDate=1630918059144, maxDate=1631522859144, sequenceNumber=4, masterKeyId=2)
      21/09/06 16:47:39 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /user/fayson/.staging/job_1630916463023_0003
      21/09/06 16:47:39 INFO input.FileInputFormat: Total input files to process : 10
      21/09/06 16:47:39 INFO mapreduce.JobSubmitter: number of splits:10
      21/09/06 16:47:39 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1630916463023_0003
      21/09/06 16:47:39 INFO mapreduce.JobSubmitter: Executing with tokens: [Kind: HDFS_DELEGATION_TOKEN, Service: ha-hdfs:CDP-1, Ident: (token for fayson: HDFS_DELEGATION_TOKEN owner=fayson@BDPHTSEC.COM, renewer=yarn, realUser=, issueDate=1630918059144, maxDate=1631522859144, sequenceNumber=4, masterKeyId=2)]
      21/09/06 16:47:39 INFO conf.Configuration: resource-types.xml not found
      21/09/06 16:47:39 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
      21/09/06 16:47:40 INFO impl.YarnClientImpl: Submitted application application_1630916463023_0003
      21/09/06 16:47:40 INFO mapreduce.Job: The url to track the job: http://cdp-master-1.c-977b427fe38547eb:8088/proxy/application_1630916463023_0003/
      21/09/06 16:47:40 INFO mapreduce.Job: Running job: job_1630916463023_0003
      21/09/06 16:47:51 INFO mapreduce.Job: Job job_1630916463023_0003 running in uber mode : false
      21/09/06 16:47:51 INFO mapreduce.Job:  map 0% reduce 0%
      21/09/06 16:47:59 INFO mapreduce.Job:  map 10% reduce 0%
      21/09/06 16:48:00 INFO mapreduce.Job:  map 20% reduce 0%
      21/09/06 16:48:02 INFO mapreduce.Job:  map 50% reduce 0%
      21/09/06 16:48:03 INFO mapreduce.Job:  map 80% reduce 0%
      21/09/06 16:48:04 INFO mapreduce.Job:  map 90% reduce 0%
      21/09/06 16:48:05 INFO mapreduce.Job:  map 100% reduce 0%
      21/09/06 16:48:09 INFO mapreduce.Job:  map 100% reduce 100%
      21/09/06 16:48:09 INFO mapreduce.Job: Job job_1630916463023_0003 completed successfully
      21/09/06 16:48:09 INFO mapreduce.Job: Counters: 55
              File System Counters
                      FILE: Number of bytes read=50
                      FILE: Number of bytes written=2798786
                      FILE: Number of read operations=0
                      FILE: Number of large read operations=0
                      FILE: Number of write operations=0
                      HDFS: Number of bytes read=2570
                      HDFS: Number of bytes written=215
                      HDFS: Number of read operations=45
                      HDFS: Number of large read operations=0
                      HDFS: Number of write operations=3
                      HDFS: Number of bytes read erasure-coded=0
              Job Counters 
                      Launched map tasks=10
                      Launched reduce tasks=1
                      Data-local map tasks=9
                      Rack-local map tasks=1
                      Total time spent by all maps in occupied slots (ms)=77868
                      Total time spent by all reduces in occupied slots (ms)=2759
                      Total time spent by all map tasks (ms)=77868
                      Total time spent by all reduce tasks (ms)=2759
                      Total vcore-milliseconds taken by all map tasks=77868
                      Total vcore-milliseconds taken by all reduce tasks=2759
                      Total megabyte-milliseconds taken by all map tasks=79736832
                      Total megabyte-milliseconds taken by all reduce tasks=2825216
              Map-Reduce Framework
                      Map input records=10
                      Map output records=20
                      Map output bytes=180
                      Map output materialized bytes=331
                      Input split bytes=1390
                      Combine input records=0
                      Combine output records=0
                      Reduce input groups=2
                      Reduce shuffle bytes=331
                      Reduce input records=20
                      Reduce output records=0
                      Spilled Records=40
                      Shuffled Maps =10
                      Failed Shuffles=0
                      Merged Map outputs=10
                      GC time elapsed (ms)=1181
                      CPU time spent (ms)=8630
                      Physical memory (bytes) snapshot=5137514496
                      Virtual memory (bytes) snapshot=31019487232
                      Total committed heap usage (bytes)=5140643840
                      Peak Map Physical memory (bytes)=539742208
                      Peak Map Virtual memory (bytes)=2822160384
                      Peak Reduce Physical memory (bytes)=216817664
                      Peak Reduce Virtual memory (bytes)=2832429056
              Shuffle Errors
                      BAD_ID=0
                      CONNECTION=0
                      IO_ERROR=0
                      WRONG_LENGTH=0
                      WRONG_MAP=0
                      WRONG_REDUCE=0
              File Input Format Counters 
                      Bytes Read=1180
              File Output Format Counters 
                      Bytes Written=97
      Job Finished in 30.961 seconds
      Estimated value of Pi is 3.60000000000000000000
      

Hive

  1. 启动hive

[root@cdp-utility-1 ~]# hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-7.1.7-1.cdh7.1.7.p0.15945976/jars/log4j-slf4j-impl-2.13.3.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-7.1.7-1.cdh7.1.7.p0.15945976/jars/slf4j-log4j12-1.7.30.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
WARNING: Use "yarn jar" to launch YARN applications.
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-7.1.7-1.cdh7.1.7.p0.15945976/jars/log4j-slf4j-impl-2.13.3.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-7.1.7-1.cdh7.1.7.p0.15945976/jars/slf4j-log4j12-1.7.30.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Connecting to jdbc:hive2://cdp-master-1.c-41332758e46048f0:2181,cdp-master-2.c-41332758e46048f0:2181,cdp-utility-1.c-41332758e46048f0:2181/default;password=root;principal=hive/_HOST@BDPHTSEC.COM;serviceDiscoveryMode=zooKeeper;user=root;zooKeeperNamespace=hiveserver2
21/09/02 16:43:42 [main]: ERROR transport.TSaslTransport: SASL negotiation failure
javax.security.sasl.SaslException: GSS initiate failed

注意这里的报错

image.png
  1. 使用fayson用户登录hive

[root@cdp-utility-1 ~]# kinit fayson
Password for fayson@BDPHTSEC.COM: 
  1. 再次访问Hive可以成功连接

image.png
  1. 创建Hive数据

0: jdbc:hive2://cdp-master-1.c-977b427fe38547> show tables;
0: jdbc:hive2://cdp-master-1.c-977b427fe38547>  create table t1 (s1 string,s2 string);
0: jdbc:hive2://cdp-master-1.c-977b427fe38547> insert into t1 values('1','2');
image.png

集群启用ranger服务

  1. 测试Hadoop SQL

image.png
  1. kinit fayson账号

image.png
  1. 测试,使用kerbos账号fayson用户创建database,创建table,并往表insert数据

create database fayson_db;
use fayson_db;
create table fayson_tb(id int,name string);
insert into fayson_tb values(1,"jack");
select * from fayson_tb;
image.png

结论,在kinit fayson创建库表并往表里面插入数据的时候,ranger默认是admin的权限

启用ranger,并配置fayson用户对表fayson_tb禁止create的权限。

使用fayson用户创建table失败(正确

image.png

使用fayson用户可以查询数据(正确

image.png

测试项:使用fayson用户访问otis用户创建的数据库,并在ranger配置访问权限

开始配置项没有otis_test访问权限

image.png

配置otis_test的访问权限

image.png

执行查询权限可以执行(正确

image.png

执行创建表,报错权限不足(正确

image.png