文档

API详情

更新时间:

通义千问VL

说明

支持的领域 / 任务:aigc

通义千问VL是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM),可以以图像、文本、检测框作为输入,并以文本和检测框作为输出,支持中文多模态对话及多图对话,并具有更好的性能,是首个支持中文开放域的通用定位模型和首个开源448分辨率的大规模视觉语言模型。

通义千问VL模型主要有以下特点:

  1. 强大的性能:在四大类多模态任务的标准英文测评中(Zero-shot Captioning/VQA/DocVQA/Grounding)上,均取得同等通用模型大小下最好效果;

  2. 多语言对话模型:天然支持英文、中文等多语言对话,端到端支持图片里中英双语的长文本识别;

  3. 多图交错对话:支持多图输入和比较,指定图片问答,多图文学创作等;

  4. 首个支持中文开放域定位的通用模型:通过中文开放域语言表达进行检测框标注;

  5. 细粒度识别和理解:相比于目前其它开源LVLM使用的224分辨率,Qwen-VL是首个开源的448分辨率的LVLM模型。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注。

用户以文本和url形式的图片形式输入包含多轮对话历史和当前指令的信息序列(messages),到返回模型生成的回复作为输出。在这一过程中,文本将被转换为语言模型可以处理的token序列。Token是模型用来表示自然语言文本的基本单位,可以直观的理解为“字”或“词”。对于中文文本来说,千问模型的1个token通常对应一个1.5-1.8个汉字;对于英文文本来说,1个token通常对应3至4个字母或1个单词。例如,中文文本“你好,我是通义千问”会被转换成序列['你好', ',', '我是', '通', '义', '千', '问'],而英文文本"Nice to meet you."则会被转换成['Nice', ' to', ' meet', ' you', '.'];图片将按照图片尺寸、图片大小、分辨率不同会转换成不同长度地token序列。

由于模型调用的计算量与token序列长度相关,输入或输出token数量越多,模型的计算时间越长,我们将根据模型输入和输出的token数量计费。可以从API返回结果的 usage 字段中了解到您每次调用时使用的token数量。

模型概览

模型名

模型简介

qwen-vl-v1

以 Qwen-7B 语言模型初始化,添加图像模型,图像输入分辨率为448的预训练模型。

qwen-vl-chat-v1

通义千问VL支持灵活的交互方式,包括多图、多轮问答、创作等能力的模型。

SDK使用

前提条件

问答示例

以下示例展示了调用通义千问VL模型对用户指令进行响应的代码。

说明

需要使用您的API-KEY替换示例中的 YOUR_DASHSCOPE_API_KEY,代码才能正常运行。

API-KEY设置

我们推荐您将API-KEY配置到环境变量中以降低API-KEY的泄漏风险,详情可参考通过环境变量配置API-KEY。您也可以在代码中配置API-KEY,但是泄漏风险会提高

简单示例

from http import HTTPStatus
import dashscope


def simple_multimodal_conversation_call():
    messages = [
        {
            "role": "user",
            "content": [
                {"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"},
                {"text": "这是什么?"}
            ]
        }
    ]
    response = dashscope.MultiModalConversation.call(model=dashscope.MultiModalConversation.Models.qwen_vl_chat_v1,
                                                     messages=messages)

    if response.status_code == HTTPStatus.OK:  #如果调用成功,则打印response
        print(response)
    else:  #如果调用失败
        print(response.code)  # 错误码
        print(response.message)  # 错误信息

if __name__ == '__main__':
    simple_multimodal_conversation_call()
// Copyright (c) Alibaba, Inc. and its affiliates.

import java.util.Arrays;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationMessage;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalMessageItemImage;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalMessageItemText;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;

public class Main {
    public static void simpleMultiModalConversationCall() throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        MultiModalMessageItemImage userImage = new MultiModalMessageItemImage(
                "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg");
        MultiModalMessageItemText userText = new MultiModalMessageItemText("这是什么?");
        MultiModalConversationMessage userMessage =
                MultiModalConversationMessage.builder().role(Role.USER.getValue())
                        .content(Arrays.asList(userImage, userText)).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                .model(MultiModalConversation.Models.QWEN_VL_CHAT_V1)
                .message(userMessage).build();
        MultiModalConversationResult result = conv.call(param);
        System.out.print(result);
    }
    public static void main(String[] args) {
        try {
            simpleMultiModalConversationCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}

本地文件

您可以通过本地文件测试接口调用。在传入文件路径时,请根据您所使用的系统和文件的路径进行调整,详情如下表所示。

系统

SDK

传入的文件路径

示例

Linux或macOS系统

Python SDK

file://{文件的绝对路径}

file:///home/images/test.png

Java SDK

Windows系统

Python SDK

file://{文件的绝对路径}

file://D:/images/test.png

Java SDK

file:///{文件的绝对路径}

file:///D:images/test.png

示例代码如下:

from dashscope import MultiModalConversation


def call_with_local_file():
    local_file_path1 = 'file://The_local_absolute_file_path1'
    local_file_path2 = 'file://The_local_absolute_file_path2'
    messages = [{
        'role': 'system',
        'content': [{
            'text': 'You are a helpful assistant.'
        }]
    }, {
        'role':
        'user',
        'content': [
            {
                'image': local_file_path1
            },
            {
                'image': local_file_path2
            },
            {
                'text': '图片里有什么东西?'
            },
        ]
    }]
    response = MultiModalConversation.call(model='qwen-vl-plus', messages=messages)
    print(response)


if __name__ == '__main__':
    call_with_local_file()
// Copyright (c) Alibaba, Inc. and its affiliates.

import java.util.Arrays;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationMessage;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalMessageItemImage;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalMessageItemText;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import io.reactivex.Flowable;

public class Main {
    /*
     * sample of use local file
     * Windows file format: file:///D:/test/images/test.png
     * Linux & Mac format: file://The_absolute_local_path
     * 
     */
    public static void callWithLocalFile()
            throws ApiException, NoApiKeyException, UploadFileException {
        String localFilePath1 = "file:///home/xxx/images/test.png";
        String localFilePath2 = "file:///home/xxx/images/test2.png";
        MultiModalConversation conv = new MultiModalConversation();
        MultiModalMessageItemImage userImage1 = new MultiModalMessageItemImage(
                localFilePath1);
        MultiModalMessageItemImage userImage2 = new MultiModalMessageItemImage(
                localFilePath2);
        MultiModalMessageItemText userText = new MultiModalMessageItemText("这是什么?");
        MultiModalConversationMessage userMessage = MultiModalConversationMessage.builder()
                .role(Role.USER.getValue()).content(Arrays.asList(userImage1, userImage2, userText)).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                .model(MultiModalConversation.Models.QWEN_VL_CHAT_V1)
                .message(userMessage)
                .build();
        Flowable<MultiModalConversationResult> result = conv.streamCall(param);
        result.blockingForEach(item -> {
            System.out.println(item);
        });
    }

    public static void main(String[] args) {
        try {
            callWithLocalFile();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}

多轮对话

from http import HTTPStatus
from dashscope import MultiModalConversation


def conversation_call():
    """Sample of multiple rounds of conversation.
    """
    messages = [
        {
            "role": "user",
            "content": [
                {"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"},
                {"text": "这是什么?"},
            ]
        }
    ]
    response = MultiModalConversation.call(model=MultiModalConversation.Models.qwen_vl_chat_v1,
                                           messages=messages)
    # The response status_code is HTTPStatus.OK indicate success,
    # otherwise indicate request is failed, you can get error code
    # and message from code and message.
    if response.status_code == HTTPStatus.OK:
        print(response)
    else:
        print(response.code)  # The error code.
        print(response.message)  # The error message.
    messages.append({'role': response.output.choices[0].message.role,
                     'content': [{'text': response.output.choices[0].message.content}]})
    messages.append({"role": "user",
                     "content": [
                         {"text": "她们在干什么?", }
                     ]})

    response = MultiModalConversation.call(model=MultiModalConversation.Models.qwen_vl_chat_v1,
                                           messages=messages)
    # The response status_code is HTTPStatus.OK indicate success,
    # otherwise indicate request is failed, you can get error code
    # and message from code and message.
    if response.status_code == HTTPStatus.OK:
        print(response)
    else:
        print(response.code)  # The error code.
        print(response.message)  # The error message.


if __name__ == '__main__':
    conversation_call()
// Copyright (c) Alibaba, Inc. and its affiliates.

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationMessage;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalMessageItemImage;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalMessageItemText;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;


public class Main {
    public static void multiRoundConversationCall() throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        MultiModalMessageItemText systemText = new MultiModalMessageItemText("You are a helpful assistant.");
        MultiModalConversationMessage systemMessage = MultiModalConversationMessage.builder()
                .role(Role.SYSTEM.getValue()).content(Arrays.asList(systemText)).build();
        MultiModalMessageItemImage userImage = new MultiModalMessageItemImage(
                "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg");
        MultiModalMessageItemText userText = new MultiModalMessageItemText("这是什么?");
        MultiModalConversationMessage userMessage =
                MultiModalConversationMessage.builder().role(Role.USER.getValue())
                        .content(Arrays.asList(userImage, userText)).build();
        List<MultiModalConversationMessage> messages = new ArrayList<>();
        messages.add(systemMessage);
        messages.add(userMessage);
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                .model(MultiModalConversation.Models.QWEN_VL_CHAT_V1)
                .messages(messages)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result);
        MultiModalMessageItemText assistentText = new MultiModalMessageItemText(
                result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text").toString());
        MultiModalConversationMessage assistentMessage = MultiModalConversationMessage.builder()
                .role(Role.ASSISTANT.getValue()).content(Arrays.asList(assistentText)).build();
        messages.add(assistentMessage);
        userText = new MultiModalMessageItemText("他们在干什么?");
        messages.add(MultiModalConversationMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(userText)).build());
        param.setMessages(new ArrayList<Object>(messages));
        result = conv.call(param);
        System.out.print(result);
    }

    public static void main(String[] args) {
        try {
            multiRoundConversationCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}

流式输出

from dashscope import MultiModalConversation


def simple_multimodal_conversation_call():
    """Simple single round multimodal conversation call.
    """
    messages = [
        {
            "role": "user",
            "content": [
                {"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"},
                {"text": "这是什么?"}
            ]
        }
    ]
    responses = MultiModalConversation.call(model=MultiModalConversation.Models.qwen_vl_chat_v1,
                                           messages=messages,
                                           stream=True)
    for response in responses:
        print(response)


if __name__ == '__main__':
    simple_multimodal_conversation_call()
// Copyright (c) Alibaba, Inc. and its affiliates.

import java.util.Arrays;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationMessage;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalMessageItemImage;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalMessageItemText;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;

import io.reactivex.Flowable;

public class Main {
    public static void simpleMultiModalConversationStreamCall() throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        MultiModalMessageItemImage userImage = new MultiModalMessageItemImage(
                "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg");
        MultiModalMessageItemText userText = new MultiModalMessageItemText("这是什么?");
        MultiModalConversationMessage userMessage =
                MultiModalConversationMessage.builder().role(Role.USER.getValue())
                        .content(Arrays.asList(userImage, userText)).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                .model(MultiModalConversation.Models.QWEN_VL_CHAT_V1)
                .message(userMessage).build();
        Flowable<MultiModalConversationResult> result = conv.streamCall(param);
        result.blockingForEach(item->{
                System.out.println(item);
        });
    }
    public static void main(String[] args) {
        try {
            simpleMultiModalConversationStreamCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}

参数配置

参数

类型

默认值

说明

model

string

-

指定用于对话的通义千问模型名,qwen-vl-v1或qwen-vl-chat-v1

messages

list[dict]

-

用户输入的历史对话信息和指令组成的完整输入信息。

参考示例,目前对于图片,支持图片url和本地路径

本地路径格式:

python下:

  • linux&mac file format: file:///home/images/test.png

  • windows file format:

file://D:/images/abc.png

java下:

  • Windows file format: file:///D:/test/images/test.png

  • Linux & Mac format: file://The_absolute_local_path

请注意Windows系统中Python与Java的区别。

top_p (可选)

float

0.8

生成过程中核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。

stream (可选)

bool

False

是否使用流式输出。当以stream模式输出结果时,接口返回结果为generator,需要通过迭代获取结果,每个输出为当前生成的整个序列,最后一次输出为最终全部生成结果。

top_k

float

100.0

生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。注意:如果top_k的值大于100,top_k将采用默认值100

seed

int

1234

生成时,随机数的种子,用于控制模型生成的随机性。如果使用相同的种子,每次运行生成的结果都将相同;当需要复现模型的生成结果时,可以使用相同的种子。seed参数支持无符号64位整数类型。默认值 1234

返回结果

  • 返回结果示例

{
    "status_code": 200,
    "request_id": "c34fdf33-d5a6-9902-8784-e76bdf60ab0c",
    "code": "",
    "message": "",
    "output": {
        "text": null,
        "finish_reason": null,
        "choices": [
            {
                "finish_reason": null,
                "message": {
                    "role": "assistant",
                    "content": "图片里有绵羊"
                }
            }
        ]
    },
    "usage": {
        "input_tokens": 0,
        "output_tokens": 5
    }
}
  • 返回参数说明

返回参数

类型

说明

status_code

int

200(HTTPStatus.OK)表示请求成功,否则表示请求失败,可以通过code获取错误码,通过message字段获取错误详细信息。

request_Id

string

系统生成的标志本次调用的id。

code

string

表示请求失败,表示错误码,成功忽略。

output

dict

调用结果信息,对于通义VL模型,包含输出message。

output.choices

List

模型为输入生成的完成选项列表。

"choices":[

{

"message":{

"role":"assistant",

"content":"我建议你去颐和园"

}

}]

output.choices[x].message.role

String

信息来源。

output.choices[x].message.content

String

本次请求的算法输出内容。

usage

dict

计量信息,表示本次请求计量数据。

usage.input_tokens

int

用户输入文本转换成Token后的长度。

usage.output_tokens

int

模型生成回复转换为Token后的长度。

HTTP调用接口

功能描述

通义VL模型同时支持 HTTP 调用来完成客户的响应,目前提供普通 HTTP 和 HTTP SSE 两种协议,您可根据自己的需求自行选择。

前提条件

提交接口调用

POST https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation

入参描述

传参方式

字段

类型

必选

描述

示例值

Header

Content-Type

String

请求类型:application/json 或者text/event-stream(开启 SSE 响应)

application/json

Authorization

String

API-Key,例如:Bearer d1**2a

Bearer d1**2a

X-DashScope-SSE

String

跟Accept: text/event-stream 二选一即可启用SSE响应

enable

Body

model

String

指明需要调用的模型

qwen-vl-chat-v1

input.messages[list]

Array

多模态场景下的输入信息

"messages":[

{

"role": "user",

"content": [

{"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"},

{"text": "这是什么?"}

]

}]

input.message[x].role

String

信息来源

input.message[x].content[list]

Array

contents 列表中包含本次输入的内容列表,每一个列表可以分别是图像(image)或者文本(text)

input.message[x].contents[list].image

String

至少包含一项

本次输入的图像内容的 url 链接;图像格式目前支持:bmp, jpg, jpeg, png 和 tiff。

input.message[x].contents[list].text

String

本次输入的文本内容;支持 utf-8 编码的中文、英文输入。

parameters.top_p

Float

生成时,核采样方法的概率阈值。例如,取值为0.8时,仅保留累计概率之和大于等于0.8的概率分布中的token,作为随机采样的候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的随机性越低。默认值 0.8。注意,取值不要大于等于1

0.8

parameters.top_k

Integer

生成时,采样候选集的大小。例如,取值为50时,仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大,生成的随机性越高;取值越小,生成的确定性越高。注意:如果top_k的值大于100,top_k将采用默认值100

50

parameters.seed

Integer

生成时,随机数的种子,用于控制模型生成的随机性。如果使用相同的种子,每次运行生成的结果都将相同;当需要复现模型的生成结果时,可以使用相同的种子。seed参数支持无符号64位整数类型。默认值 1234

65535

出参描述

字段

类型

描述

示例值

output.choices[list]

Array

模型为输入生成的完成选项列表。

"choices":[

{

"message":{

"role":"assistant",

"content":"我建议你去颐和园"

}

}]

output.choices[x].message.role

String

信息来源。

output.choices[x].message.content

String

本次请求的算法输出内容。

output.finish_reason

String

有三种情况:正在生成时为null,生成结束时如果由于停止token导致则为stop,生成结束时如果因为生成长度过长导致则为length。

stop

usage.output_tokens

Integer

本次请求算法输出内容的 token 数目。

380

usage.input_tokens

Integer

本次请求输入内容的 token 数目。在打开了搜索的情况下,输入的 token 数目因为还需要添加搜索相关内容支持,所以会超出客户在请求中的输入。

633

request_id

String

本次请求的系统唯一码

7574ee8f-38a3-4b1e-9280-11c33ab46e51

请求示例(SSE 关闭)

以下示例展示通过CURL命令来调用通义千问-VL模型的脚本(SSE 关闭)。

说明

需要使用您的API-KEY替换示例中的 your-dashscope-api-key ,代码才能正常运行。

curl --location 'https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header 'Authorization: Bearer <your-dashscope-api-key>' \
--header 'Content-Type: application/json' \
--data '{
    "model": "qwen-vl-chat-v1",
    "input":{
        "messages":[
            {
                "role": "system",
                "content": [
                    {"text": "You are a helpful assistant."}
                ]
            },
            {
                "role": "user",
                "content": [
                    {"image": "http://XXXX"},
                    {"text": "这个图片是哪里?"}
                ]
            }
        ]
    },
    "parameters": {
    }
}'

响应示例(SSE关闭)

{
    "output":{
        "choices": [
            "message": {
                "role": "assistant",
                "content": "这个图片描述的是 ... ... ..."
            }
        ]
        "finish_reason":"stop"    
    },
    "usage":{
        "output_tokens":380,
        "input_tokens":633
    },
    "request_id":"d89c06fb-46a1-47b6-acb9-bfb17f814969"
}

请求示例(SSE开启

以下示例展示通过CURL命令来调用通义千问-VL模型的脚本(SSE 开启)。

说明

需要使用您的API-KEY替换示例中的 your-dashscope-api-key ,代码才能正常运行。

curl --location 'https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header 'Authorization: Bearer <your-dashscope-api-key>' \
--header 'Content-Type: application/json' \
--header 'X-DashScope-SSE: enable' \
--data '{
    "model": "qwen-vl-chat-v1",
    "input":{
        "messages":[
            {
                "role": "system",
                "content": [
                    {"text": "You are a helpful assistant."}
                ]
            },
            {
                "role": "user",
                "content": [
                    {"image": "http://XXXX"},
                    {"text": "这个图片是哪里?"}
                ]
            }
        ]
    },
    "parameters": {
    }
}'

响应示例(SSE开启

id:1
event:result
data:{"output":{"finish_reason":"null","choices":["message":{"role":"assistant","content":"这个"}]},"usage":{"output_tokens":3,"input_tokens":85},"request_id":"1117fb64-5dd9-9df0-a5ca-d7ee0e97032d"}

id:2
event:result
data:{"output":{"finish_reason":"null","choices":["message":{"role":"assistant","content":"这个图片描述"}]},"usage":{"output_tokens":11,"input_tokens":85},"request_id":"1117fb64-5dd9-9df0-a5ca-d7ee0e97032d"}

... ... ... ...
... ... ... ...

id:8
event:result
data:{"output":{"finish_reason":"stop","choices":["message":{"role":"assistant","content":"这个图片描述的是一个公园里的 ... ... "}]},"usage":{"output_tokens":51,"input_tokens":85},"request_id":"1117fb64-5dd9-9df0-a5ca-d7ee0e97032d"}

异常响应示例

在访问请求出错的情况下,输出的结果中会通过 code 和 message 指明出错原因。

{
    "code":"InvalidApiKey",
    "message":"Invalid API-key provided.",
    "request_id":"fb53c4ec-1c12-4fc4-a580-cdb7c3261fc1"
}

状态码说明

DashScope灵积模型服务通用状态码请查阅:返回状态码说明

  • 本页导读 (0)