音视频处理最佳实践

您可以通过函数计算控制台、SDK或Serverless Devs来体验GPU实例的最佳实践。本文以Python语言为例,说明如何使用Serverless Devs开发工具,将原始视频经过函数代码的转码处理,从.mp4转换为.flv格式。

应用场景和优势

随着越来越多的强交互应用场景的出现,例如社交直播、在线课堂以及远程医疗等,互联网流量正在向实时、准实时的趋势演进。视频平台通常要将原始视频内容根据码率、分辨率、渠道贴片、播放平台等维度,以1∶N的方式转码输出多种分发视频格式,以服务不同网络质量、各种播放平台的观看者。视频转码是视频生产分发中的关键一环,理想的视频转码解决方案需要在成本(人民币/流)和功率效率(瓦/流)方面具有成本效益。

在不同的应用场景下,函数计算提供的GPU实例与CPU相比所具备的优势如下。

  • 实时、准实时的应用场景

    提供数倍于CPU的转码效率,从而快速将生产内容推向终端用户。

  • 成本优先的GPU应用场景

    提供弹性预留模式,从而按需为您保留工作GPU实例,对比自购VM拥有较大成本优势。

  • 效率优先的GPU应用场景

    屏蔽运维GPU集群的繁重负担(驱动/CUDA版本管理、机器运行管理、GPU坏卡管理),使得开发者专注于代码开发、聚焦业务目标的达成。

GPU实例的更多信息,请参见实例类型及使用模式

性能对比

函数计算GPU实例基于的Turing架构支持以下编码和解码格式:

  • 编码格式

    H.264 (AVCHD) YUV 4:2:0

    H.264 (AVCHD) YUV 4:4:4

    H.264 (AVCHD) Lossless

    H.265 (HEVC) 4K YUV 4:2:0

    H.265 (HEVC) 4K YUV 4:4:4

    H.265 (HEVC) 4K Lossless

    H.265 (HEVC) 8k

    HEVC10-bitsupport

    HEVCB Framesupport

  • 解码格式

    MPEG-1

    MPEG-2

    VC-1

    VP8

    VP9

    H.264 (AVCHD)

    H.265 (HEVC) 4:2:0

    *H.265 (HEVC) 4:4:4

    8 bit

    10 bit

    12 bit

    8 bit

    10 bit

    12 bit

    8 bit

    10 bit

    12 bit

原始视频信息如下表所示。

视频信息

数据

时长

2分05秒

码率

4085 Kb/s

视频流信息

h264 (High), yuv420p (progressive), 1920x1080 [SAR 1:1 DAR 16:9], 25 fps, 25 tbr, 1k tbn, 50 tbc

音视频信息

aac (LC), 44100 Hz, stereo, fltp

CPU和GPU的测试机器指标如下表所示。

对比项

CPU机型

GPU机型

CPU

CPU Xeon® Platinum 8163 4C

CPU Xeon® Platinum 8163 4C

RAM

16 GB

16 GB

GPU

N/A

T4

FFmpeg

git-2020-08-12-1201687

git-2020-08-12-1201687

视频转码(1∶1)

性能测试:1路输入、1路输出

分辨率

CPU转码耗时

GPU转码耗时

H264∶1920x1080 (1080p) (Full HD)

3分19.331秒

0分9.399秒

H264∶1280x720 (720p) (Half HD)

2分3.708秒

0分5.791秒

H264∶640x480 (480p)

1分1.018秒

0分5.753秒

H264∶480x360 (360p)

44.376秒

0分5.749秒

视频转码(1∶N)

性能测试:1路输入、3路输出

分辨率

CPU转码耗时

GPU转码耗时

H264∶1920x1080 (1080p) (Full HD)

5分58.696秒

0分45.268秒

H264∶1280x720 (720p) (Half HD)

H264∶640x480 (480p)

转码命令

  • CPU转码命令

    • 单路转码(1∶1)

      docker run --rm -it --volume $PWD:/workspace --runtime=nvidia willprice/nvidia-ffmpeg -y -i input.mp4 -c:v h264 -vf scale=1920:1080 -b:v 5M output.mp4
    • 多路转码(1∶N)

      docker run --rm -it --volume $PWD:/workspace --runtime=nvidia willprice/nvidia-ffmpeg \
      -y -i input.mp4 \
      -c:a copy -c:v h264 -vf scale=1920:1080 -b:v 5M output_1080.mp4 \
      -c:a copy -c:v h264 -vf scale=1280:720 -b:v 5M output_720.mp4 \
      -c:a copy -c:v h264 -vf scale=640:480 -b:v 5M output_480.mp4
    表 1. 参数说明

    参数

    说明

    -c:a copy

    无需任何重新编码即可复制音频流。

    -c:v h264

    为输出流选择软件H.264编码器。

    -b:v 5M

    将输出比特率设置为5 Mb/s。

  • GPU转码命令

    • 单路转码(1∶1)

      docker run --rm -it --volume $PWD:/workspace --runtime=nvidia willprice/nvidia-ffmpeg -y -hwaccel cuda -hwaccel_output_format cuda -i input.mp4 -c:v h264_nvenc -vf scale_cuda=1920:1080:1:4 -b:v 5M output.mp4
    • 多路转码(1∶N)

      docker run --rm -it --volume $PWD:/workspace --runtime=nvidia willprice/nvidia-ffmpeg \
      -y -hwaccel cuda -hwaccel_output_format cuda -i input.mp4 \
      -c:a copy -c:v h264_nvenc -vf scale_npp=1920:1080 -b:v 5M output_1080.mp4 \
      -c:a copy -c:v h264_nvenc -vf scale_npp=1280:720 -b:v 5M output_720.mp4 \
      -c:a copy -c:v h264_nvenc -vf scale_npp=640:480 -b:v 5M output_480.mp4
    表 2. 参数说明

    参数

    说明

    -hwaccel cuda

    选择合适的硬件加速器。

    -hwaccel_output_format cuda

    将解码的帧保存在GPU内存中。

    -c:v h264_nvenc

    选择NVIDIA硬件加速H.264编码器。

准备工作

  • 使用GPU实例过程中,为了确保您的业务正常进行,请加入钉钉用户群(钉钉群号:11721331),并提供以下信息。

    • 组织名称,例如您所在的公司名称。

    • 您的阿里云账号ID。

    • 您期望使用GPU实例的地域,例如华南1(深圳)。

    • 联系方式,例如您的手机号、邮箱或钉钉账号等。

  • 在GPU实例所在地域,完成以下操作:

  • 编译FFmpeg。

    FFmpeg需要自行编译以使用GPU加速,编译方式如下:

  • 将需处理的音视频资源上传至在GPU实例所在地域的OSS Bucket中,且您对该Bucket中的文件有读写权限。具体步骤,请参见控制台上传文件。权限相关说明,请参见修改存储空间读写权限

通过Serverless Devs部署GPU应用

前提条件

操作步骤

  1. 创建项目。

    s init devsapp/start-fc-custom-container-event-python3.9 -d fc-gpu-prj

    创建的项目目录如下所示。

    fc-gpu-prj
    ├── code
    │   ├── app.py        # 函数代码
    │   └── Dockerfile    # Dockerfile:将代码打包成镜像的Dockerfile
    ├── README.md
    └── s.yaml            # 项目配置:包含了镜像如何部署在函数计算
  2. 进入项目所在目录。

    cd fc-gpu-prj
  3. 按实际情况修改目录文件的参数配置。

    • 编辑s.yaml文件。

      YAML文件的参数详解,请参见YAML规范

      edition: 1.0.0
      name: container-demo
      access: default
      vars:
        region: cn-shenzhen
      services:
        customContainer-demo:
          component: devsapp/fc
          props:
            region: ${vars.region}
            service:
              name: tgpu_ffmpeg_service
              internetAccess: true
            function:
              name: tgpu_ffmpeg_func
              description: test gpu for ffmpeg
              handler: not-used
              timeout: 600
              caPort: 9000
              instanceType: fc.gpu.tesla.1
              gpuMemorySize: 8192
              cpu: 4
              memorySize: 16384
              diskSize: 512
              runtime: custom-container
              customContainerConfig:
                # 1. 请检查阿里云ACR容器镜像仓库已提前创建相应的命名空间(namespace:demo)与仓库(repo:gpu-transcoding_s)。
                # 2. 后续更新函数时,请修改此处的tag,由v0.1修改为v0.2后,重新执行s build && s deploy。
                image: registry.cn-shanghai.aliyuncs.com/demo/gpu-transcoding_s:v0.1
              codeUri: ./code
    • 编辑app.py文件。

      示例如下:

      # -*- coding: utf-8 -*-
      # python2 and python3
      
      from __future__ import print_function
      from http.server import HTTPServer, BaseHTTPRequestHandler
      import json
      import sys
      import logging
      import os
      import time
      import urllib.request
      import subprocess
      
      class Resquest(BaseHTTPRequestHandler):
          def download(self, url, path):
              print("enter download:", url)
              f = urllib.request.urlopen(url)
              with open(path, "wb") as local_file:
                  local_file.write(f.read())
      
          def upload(self, url, path):
              print("enter upload:", url)
              headers = {
                  'Content-Type': 'application/octet-stream',
                  'Content-Length': os.stat(path).st_size,
              }
              req = urllib.request.Request(url, open(path, 'rb'), headers=headers, method='PUT')
              urllib.request.urlopen(req)
      
          def trans(self, input_path, output_path, enable_gpu):
              print("enter trans input:", input_path, " output:", output_path, " enable_gpu:", enable_gpu)
      
              cmd = ['ffmpeg', '-y', '-i', input_path, "-c:a", "copy", "-c:v", "h264", "-b:v", "5M", output_path]
              if enable_gpu:
                  cmd = ["ffmpeg", "-y", "-hwaccel", "cuda", "-hwaccel_output_format", "cuda", "-i", input_path, "-c:v", "h264_nvenc", "-b:v", "5M", output_path]
      
              try:
                  subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
              except subprocess.CalledProcessError as exc:
                  print('\nreturncode:{}'.format(exc.returncode))
                  print('\ncmd:{}'.format(exc.cmd))
                  print('\noutput:{}'.format(exc.output))
                  print('\nstderr:{}'.format(exc.stderr))
                  print('\nstdout:{}'.format(exc.stdout))
      
          def trans_wrapper(self, enable_gpu):
              src_url = "https://your.domain/input.mp4"  # 需替换为您个人阿里云账号下的OSS,且您有可读写的权限。
              dst_url = "https://your.domain/output.flv" # 需替换为您个人阿里云账号下的OSS,且您有可读写的权限。
              src_path = "/tmp/input_c.flv"
              dst_path = "/tmp/output_c.mp4"
      
              if enable_gpu:
                  src_url = "https://your.domain/input.mp4"  # 需替换为您个人账号下的OSS,且您有可读写的权限。
                  dst_url = "https://your.domain/output.flv" # 需替换为您个人账号下的OSS,且您有可读写的权限。
                  src_path = "/tmp/input_g.flv"
                  dst_path = "/tmp/output_g.mp4"
      
              local_time = time.time()
              self.download(src_url, src_path)
              download_time = time.time() - local_time
      
              local_time = time.time()
              self.trans(src_path, dst_path, enable_gpu)
              trans_time = time.time() - local_time
      
              local_time = time.time()
              self.upload(dst_url, dst_path)
              upload_time = time.time() - local_time
      
              data = {'result':'ok', 'download_time':download_time, 'trans_time':trans_time, 'upload_time':upload_time}
              self.send_response(200)
              self.send_header('Content-type', 'application/json')
              self.end_headers()
              self.wfile.write(json.dumps(data).encode())
      
          def pong(self):
              data = {"function":"trans_gpu"}
              self.send_response(200)
              self.send_header('Content-type', 'application/json')
              self.end_headers()
              self.wfile.write(json.dumps(data).encode())
      
          def dispatch(self):
              mode = self.headers.get('TRANS-MODE')
      
              if mode == "ping":
                  self.pong()
              elif mode == "gpu":
                  self.trans_wrapper(True)
              elif mode == "cpu":
                  self.trans_wrapper(False)
              else:
                  self.pong()
      
          def do_GET(self):
              self.dispatch()
      
          def do_POST(self):
              self.dispatch()
      
      if __name__ == '__main__':
          host = ('0.0.0.0', 9000)
          server = HTTPServer(host, Resquest)
          print("Starting server, listen at: %s:%s" % host)
          server.serve_forever()
    • 编辑Dockerfile文件。

      示例如下:

      FROM registry.cn-shanghai.aliyuncs.com/serverless_devs/nvidia-ffmpeg:latest
      WORKDIR /usr/src/app
      RUN apt-get update --fix-missing
      RUN apt-get install -y python3
      RUN apt-get install -y python3-pip
      COPY . .
      ENTRYPOINT [ "python3", "-u", "/usr/src/app/app.py" ]
      EXPOSE 9000
  4. 构建镜像。

    s build --dockerfile ./code/Dockerfile
  5. 部署代码至函数计算

    s deploy
    说明

    服务名称和函数名称不变,重复执行以上命令时,请选择本地配置,即use local

  6. 配置预留模式的实例。

    s provision put --target 1 --qualifier LATEST
  7. 查询预留模式的实例是否就绪。

    s provision get --qualifier LATEST

    如果查询到current参数为1,则说明GPU实例的预留模式已就绪,示例如下。

    [2021-12-14 08:45:24] [INFO] [S-CLI] - Start ...
    [2021-12-14 08:45:24] [INFO] [FC] - Getting provision: tgpu_ffmpeg_service.LATEST/tgpu_ffmpeg_func
    customContainer-demo:
     serviceName:      tgpu_ffmpeg_service
     functionName:      tgpu_ffmpeg_func
     qualifier:       LATEST
     resource:        188077086902****#tgpu_ffmpeg_service#LATEST#tgpu_ffmpeg_func
     target:         1
     current:        1
     scheduledActions:    (empty array)
     targetTrackingPolicies: (empty array)
     currentError:     
  8. 调用函数。

    • 查看线上函数版本

      s invoke
    • 使用CPU进行转码

      s invoke -e '{"method":"GET","headers":{"TRANS-MODE":"cpu"}}'
    • 使用GPU进行转码

      s invoke -e '{"method":"GET","headers":{"TRANS-MODE":"gpu"}}'
  9. 释放GPU实例。

    s provision put --target 0 --qualifier LATEST

通过函数计算控制台部署GPU应用

  1. 部署镜像。
    1. 建容器镜像服务的企业版实例或个人版实例。
      推荐您创建企业版实例。具体操作步骤,请参见创建企业版实例
    2. 创建命名空间和镜像仓库。
    3. 容器镜像服务控制台,根据界面提示完成Docker相关操作步骤。然后将上述示例app.pyDockerfile推送至实例镜像仓库,文件信息,请参见通过ServerlessDevs部署GPU应用时/code目录中的app.pyDockerfile
      db-acr-docker
  2. 创建服务。具体操作步骤,请参见创建服务
  3. 创建函数。具体操作步骤,请参见创建Custom Container函数
    说明 实例类型选择GPU实例请求处理程序类型选择处理 HTTP 请求
  4. 修改函数的执行超时时间。

    1. 单击目标服务下目标函数右侧操作列的配置

    2. 环境信息区域,修改执行超时时间,然后单击保存

      db-gpu-time
    说明

    CPU转码耗时会超过默认的60s,因此建议您修改执行超时时间为较大的值。

  5. 配置GPU预留实例。

    1. 在函数详情页面,单击弹性管理页签,然后单击创建规则

    2. 在创建弹性伸缩限制规则页面,按需配置参数,预留GPU实例,然后单击创建

      关于配置预留实例的具体操作,请参见配置预留实例db-gpu-reserved

      配置完成后,您可以在规则列表查看预留的GPU实例是否就绪。即当前预留实例数是否为设置的预留实例数。

  6. 使用cURL测试函数。

    1. 在函数详情页面,单击触发器管理页签,查看触发器的配置信息,获取触发器的访问地址。

    2. 在命令行执行如下命令,调用GPU函数。

      • 查看线上函数版本

        curl -v "https://tgpu-ff-console-tgpu-ff-console-ajezot****.cn-shenzhen.fcapp.run"
        {"function": "trans_gpu"}
      • 使用CPU进行转码

        curl "https://tgpu-ff-console-tgpu-ff-console-ajezot****.cn-shenzhen.fcapp.run" -H 'TRANS-MODE: cpu'
        {"result": "ok", "upload_time": 8.75510573387146, "download_time": 4.910430669784546, "trans_time": 105.37688875198364}
      • 使用GPU进行转码

        curl "https://tgpu-ff-console-tgpu-ff-console-ajezotchpx.cn-shenzhen.fcapp.run" -H 'TRANS-MODE: gpu'
        {"result": "ok", "upload_time": 8.313958644866943, "download_time": 5.096682548522949, "trans_time": 8.72346019744873}

执行结果

您可通过在浏览器中访问以下域名,查看转码后的视频:

https://cri-zbtsehbrr8******-registry.oss-cn-shenzhen.aliyuncs.com/output.flv

本域名仅为示例,需以实际情况为准。