FLUX文生图模型
支持的领域 / 任务:aigc
FLUX模型是由 Black Forest Labs 开源的高质量文本到图像生成模型,它在多个维度上展现了卓越性能,尤其在文本引导的图像生成、多主体场景构建以及精细的手部细节生成等方面,实现了显著的提升,为文生图领域设定了新的技术标杆。
上线的 FLUX.1 [schnell] 模型作为目前开源最先进的少步模型,不仅超越了同类竞争者,甚至还优于诸如 Midjourney v6.0 和 DALL·E 3 (HD) 等强大的非精馏模型。该模型经过专门微调,以保留预训练阶段的全部输出多样性,相较于当前市场上的最先进开源模型, FLUX.1 [schnell] 显著提升了在视觉质量、指令遵从、尺寸/比例变化、字体处理及输出多样性等方面的可能,为用户带来更为丰富多样的创意图像生成体验。
同时上线的 FLUX.1 [dev] 模型是一款面向非商业应用的开源权重、精炼模型。 FLUX.1 [dev] 在保持了与 FLUX 专业版相近的图像质量和指令遵循能力的同时,具备更高的运行效率。相较于同尺寸的标准模型,它在资源利用上更为高效。
除了为 FLUX 系列的官方模型与基于 FLUX 架构的开源社区模型提供服务化支撑外,我们还针对 FLUX 文生图模型实施了中文 Prompt 的适应性优化。此番调整确保了模型能够深刻理解并精准响应中文指令,进而生成与英文 Prompt 同等质量的图像成果。
快速开始
前提条件
已开通服务并获得API-KEY:获取API-KEY。
我们推荐您将API-KEY配置到环境变量中以降低API-KEY的泄漏风险,详情可参考配置API-KEY到环境变量。您也可以在代码中配置API-KEY,但是泄漏风险会提高。
已安装SDK:安装SDK。
示例代码
以下示例展示了调用 flux-schnell 模型API进行文生图的快速示例代码。以下示例展示了调用 flux-schnell 模型API进行文生图的快速示例代码。如果要调用 flux-dev 模型,只需要修改 model 为 "flux-dev" 即可。
from http import HTTPStatus
from urllib.parse import urlparse, unquote
from pathlib import PurePosixPath
import requests
import dashscope
model = "flux-schnell"
prompt = "Eagle flying freely in the blue sky and white clouds"
prompt_cn = "一只飞翔在蓝天白云的鹰" # Prompt支持中英文
def simple_call(input_prompt):
rsp = dashscope.ImageSynthesis.call(model=model,
prompt=input_prompt,
size='1024*1024')
if rsp.status_code == HTTPStatus.OK:
print(rsp.output)
print(rsp.usage)
# save file to current directory
for result in rsp.output.results:
file_name = PurePosixPath(unquote(urlparse(result.url).path)).parts[-1]
with open('./%s' % file_name, 'wb+') as f:
f.write(requests.get(result.url).content)
else:
print('Failed, status_code: %s, code: %s, message: %s' %
(rsp.status_code, rsp.code, rsp.message))
if __name__ == '__main__':
simple_call(prompt)
simple_call(prompt_cn)
// Copyright (c) Alibaba, Inc. and its affiliates.
import java.io.IOException;
import java.net.URL;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Map;
import com.alibaba.dashscope.aigc.imagesynthesis.ImageSynthesis;
import com.alibaba.dashscope.aigc.imagesynthesis.ImageSynthesisParam;
import com.alibaba.dashscope.aigc.imagesynthesis.ImageSynthesisResult;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import okhttp3.OkHttpClient;
import okhttp3.Request;
import okhttp3.Response;
public class Main {
private static final OkHttpClient CLIENT = new OkHttpClient();
private static final String MODEL = "flux-schnell";
private static final String PROMPT = "Eagle flying freely in the blue sky and white clouds";
private static final String PROMPT_CN = "一只飞翔在蓝天白云的鹰";
private static final String SIZE = "1024*1024";
public static void basicCall() throws ApiException, NoApiKeyException, IOException {
ImageSynthesis is = new ImageSynthesis();
ImageSynthesisParam param =
ImageSynthesisParam.builder()
.model(Main.MODEL)
.n(1)
.size(Main.SIZE)
.prompt(Main.PROMPT)
.negativePrompt("garfield")
.build();
ImageSynthesisResult result = is.call(param);
System.out.println(result);
// save image to local files.
for(Map<String, String> item :result.getOutput().getResults()){
String paths = new URL(item.get("url")).getPath();
String[] parts = paths.split("/");
String fileName = parts[parts.length-1];
Request request = new Request.Builder()
.url(item.get("url"))
.build();
try (Response response = CLIENT.newCall(request).execute()) {
if (!response.isSuccessful()) {
throw new IOException("Unexpected code " + response);
}
Path file = Paths.get(fileName);
Files.write(file, response.body().bytes());
}
}
}
public void fetchTask() throws ApiException, NoApiKeyException {
String taskId = "your task id";
ImageSynthesis is = new ImageSynthesis();
// If set DASHSCOPE_API_KEY environment variable, apiKey can null.
ImageSynthesisResult result = is.fetch(taskId, null);
System.out.println(result.getOutput());
System.out.println(result.getUsage());
}
public static void main(String[] args){
try{
basicCall();
}catch(ApiException|NoApiKeyException | IOException e){
System.out.println(e.getMessage());
}
System.exit(0);
}
}
调用成功后,将会返回如下示例结果。
{
"status_code": 200,
"request_id": "ea8bfe77-2f35-9df3-ba47-7e05e917b3df",
"code": null,
"message": "",
"output": {
"task_id": "dea97660-9651-4e6b-a9c3-8afb325b28d0",
"task_status": "SUCCEEDED",
"results": [
{
"url": "url1"
}
],
"task_metrics": {
"TOTAL": 1,
"SUCCEEDED": 1,
"FAILED": 0
}
},
"usage": {
"image_count": 1
}
}
了解更多
有关 FLUX 文生图模型API的详细调用文档可前往API详情页面进行了解。