调用模型时启用内置的 Python 代码解释器,可使模型在沙箱环境里编写与运行 Python 代码,以解决数学计算、数据分析等复杂问题。
使用方式
代码解释器功能支持三种调用方式,启用参数有所不同:
OpenAI 兼容-Responses API
通过 tools 参数启用代码解释器功能,需添加 code_interpreter 工具。
为了获得最佳回复效果,建议同时开启code_interpreter、web_search和web_extractor工具。
# 导入依赖与创建客户端...
response = client.responses.create(
model="qwen3-max-2026-01-23",
input="123的21次方是多少?",
tools=[
{"type": "code_interpreter"},
{"type": "web_search"},
{"type": "web_extractor"},
],
extra_body={
"enable_thinking": True
}
)
print(response.output_text)OpenAI 兼容-Chat Completions API
在 API 请求中传入 enable_code_interpreter: true 即可启用代码解释器。
# 导入依赖与创建客户端...
completion = client.chat.completions.create(
# 需使用支持代码解释器的模型
model="qwen3-max-2026-01-23",
messages=[{"role": "user", "content": "123的21次方是多少?"}],
# 由于 enable_code_interpreter 非 OpenAI 标准参数,使用 Python SDK 需要通过 extra_body 传入(使用Node.js SDK 需作为顶层参数传入)
extra_body={
"enable_code_interpreter": True,
# 代码解释器功能仅支持思考模式调用
"enable_thinking": True,
},
# 仅支持流式输出调用
stream=True
)OpenAI 兼容协议无法获取代码解释器运行的代码信息。
DashScope
在 API 请求中设置 enable_code_interpreter 为true即可启用代码解释器。
# 导入依赖...
response = dashscope.Generation.call(
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
model="qwen3-max-2026-01-23",
messages=[{"role": "user", "content": "123的21次方是多少?"}],
# 通过 enable_code_interpreter 参数开启代码解释器
enable_code_interpreter=True,
# 代码解释器功能仅支持思考模式
enable_thinking=True,
result_format="message",
# 仅支持流式输出调用
stream=True
)代码解释器运行的代码将通过tool_info字段返回。
启用后,模型将分阶段处理请求:
思考:模型分析用户请求,并生成解决问题的思路和步骤。
代码执行:模型生成并执行 Python 代码。
结果整合:模型接收代码执行结果,并规划后续步骤。
回复:模型生成自然语言回复。
第二步和第三步可能循环执行多次。
不同 API 返回的字段有所差异:
Responses API:思考内容通过 output 中 type="reasoning" 的对象返回,代码执行通过 type="code_interpreter_call" 返回,回复通过 type="message" 返回。
Chat Completions API / DashScope:思考内容通过 reasoning_content 字段返回,回复通过 content 字段返回。DashScope 额外支持 tool_info 字段返回代码内容。
适用范围
中国内地
思考模式下的 qwen3-max-2026-01-23、qwen3-max-preview。
国际
思考模式下的 qwen3-max-2026-01-23
暂不支持 Responses API。
快速开始
以下示例演示代码解释器如何高效解决数学计算问题。
OpenAI 兼容-Responses API
仅支持思考模式下的 qwen3-max-2026-01-23。
为获得最佳回复效果,建议同时开启code_interpreter、web_search和web_extractor工具。
import os
from openai import OpenAI
client = OpenAI(
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/api/v2/apps/protocols/compatible-mode/v1"
)
response = client.responses.create(
model="qwen3-max-2026-01-23",
input="12的3次方",
tools=[
{
"type": "code_interpreter"
},
{
"type": "web_search"
},
{
"type": "web_extractor"
}
],
extra_body = {
"enable_thinking": True
}
)
# 取消以下注释查看中间过程输出
# print(response.output)
print("="*20+"回复内容"+"="*20)
print(response.output_text)
print("="*20+"Token 消耗与工具调用"+"="*20)
print(response.usage)import OpenAI from "openai";
import process from 'process';
const openai = new OpenAI({
// 若没有配置环境变量,请用百炼API Key将下行替换为:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
baseURL: "https://dashscope.aliyuncs.com/api/v2/apps/protocols/compatible-mode/v1"
});
async function main() {
const response = await openai.responses.create({
model: "qwen3-max-2026-01-23",
input: "请计算12的三次方",
tools: [
{ type: "code_interpreter" },
{ type: "web_search" },
{ type: "web_extractor" }
],
enable_thinking: true
});
console.log("====================回复内容====================");
console.log(response.output_text);
// 打印工具调用次数
console.log("====================Token 消耗与工具调用====================");
if (response.usage && response.usage.x_tools) {
console.log(`代码解释器运行次数: ${response.usage.x_tools.code_interpreter?.count || 0}`);
}
// 取消以下注释查看中间过程的输出
// console.log(JSON.stringify(response.output[0], null, 2));
}
main();curl -X POST https://dashscope.aliyuncs.com/api/v2/apps/protocols/compatible-mode/v1/responses \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-max-2026-01-23",
"input": "请计算12的三次方",
"tools": [
{"type": "code_interpreter"},
{"type": "web_search"},
{"type": "web_extractor"}
],
"enable_thinking": true
}'响应示例
====================回复内容====================
12的3次方等于 **1728**。
计算过程:
12³ = 12 × 12 × 12 = 144 × 12 = 1728
====================Token 消耗与工具调用====================
ResponseUsage(input_tokens=1160, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=195, output_tokens_details=OutputTokensDetails(reasoning_tokens=105), total_tokens=1355, x_tools={'code_interpreter': {'count': 1}})OpenAI 兼容-Chat Completions API
Python
from openai import OpenAI
import os
# 初始化OpenAI客户端
client = OpenAI(
# 如果没有配置环境变量,请用阿里云百炼API Key替换:api_key="sk-xxx"
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 使用国际地域模型请替换为"https://dashscope-intl.aliyuncs.com/compatible-mode/v1"
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
messages = [{"role": "user", "content": "123的21次方是多少?"}]
completion = client.chat.completions.create(
model="qwen3-max-2026-01-23",
messages=messages,
extra_body={"enable_thinking": True, "enable_code_interpreter": True},
stream=True,
stream_options={
"include_usage": True
},
)
reasoning_content = "" # 完整思考过程
answer_content = "" # 完整回复
is_answering = False # 是否进入回复阶段
print("\n" + "=" * 20 + "思考过程" + "=" * 20 + "\n")
for chunk in completion:
if not chunk.choices:
print("\nUsage:")
print(chunk.usage)
continue
delta = chunk.choices[0].delta
# 只收集思考内容
if hasattr(delta, "reasoning_content") and delta.reasoning_content is not None:
if not is_answering:
print(delta.reasoning_content, end="", flush=True)
reasoning_content += delta.reasoning_content
# 收到content,开始进行回复
if hasattr(delta, "content") and delta.content:
if not is_answering:
print("\n" + "=" * 20 + "完整回复" + "=" * 20 + "\n")
is_answering = True
print(delta.content, end="", flush=True)
answer_content += delta.content响应示例
====================思考过程====================
用户问的是123的21次方是多少。这是一个数学计算问题,我需要计算123^21。
我可以使用代码计算器来计算这个值。我需要调用code_interpreter函数,传入计算123**21的Python代码。
让我构造这个函数调用。
用户询问123的21次方是多少,我使用Python代码计算了这个结果。计算结果显示123的21次方等于77269364466549865653073473388030061522211723。这是一个非常大的数字,我应该直接给出这个
====================完整回复====================
123的21次方是:77269364466549865653073473388030061522211723
Usage:
CompletionUsage(completion_tokens=245, prompt_tokens=719, total_tokens=964, completion_tokens_details=CompletionTokensDetails(accepted_prediction_tokens=None, audio_tokens=None, reasoning_tokens=153, rejected_prediction_tokens=None), prompt_tokens_details=None)Node.js
import OpenAI from "openai";
import process from 'process';
// 初始化 openai 客户端
const openai = new OpenAI({
apiKey: process.env.DASHSCOPE_API_KEY, // 从环境变量读取
// 使用国际地域模型请替换为https://dashscope-intl.aliyuncs.com/compatible-mode/v1
baseURL: 'https://dashscope.aliyuncs.com/compatible-mode/v1'
});
let reasoningContent = '';
let answerContent = '';
let isAnswering = false;
async function main() {
try {
const messages = [{ role: 'user', content: '123的21次方是多少?' }];
const stream = await openai.chat.completions.create({
model: 'qwen3-max-2026-01-23',
messages,
stream: true,
enable_thinking: true,
enable_code_interpreter: true
});
console.log('\n' + '='.repeat(20) + '思考过程' + '='.repeat(20) + '\n');
for await (const chunk of stream) {
if (!chunk.choices?.length) {
console.log('\nUsage:');
console.log(chunk.usage);
continue;
}
const delta = chunk.choices[0].delta;
// 只收集思考内容
if (delta.reasoning_content !== undefined && delta.reasoning_content !== null) {
if (!isAnswering) {
process.stdout.write(delta.reasoning_content);
}
reasoningContent += delta.reasoning_content;
}
// 收到content,开始进行回复
if (delta.content !== undefined && delta.content) {
if (!isAnswering) {
console.log('\n' + '='.repeat(20) + '完整回复' + '='.repeat(20) + '\n');
isAnswering = true;
}
process.stdout.write(delta.content);
answerContent += delta.content;
}
}
} catch (error) {
console.error('Error:', error);
}
}
main();响应示例
====================思考过程====================
The user is asking for the value of 123 raised to the power of 21. This is a mathematical calculation that I can perform using Python's code interpreter. I'll use the exponentiation operator ** to calculate this.
Let me write the code to compute 123**21.The calculation has been completed successfully. The result of 123 raised to the power of 21 is a very large number: 77269364466549865653073473388030061522211723.
I should present this result clearly to the user.
====================完整回复====================
123的21次方是:77269364466549865653073473388030061522211723curl
# 使用国际地域模型请替换为https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions
curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-max-2026-01-23",
"messages": [
{
"role": "user",
"content": "123的21次方是多少?"
}
],
"enable_code_interpreter": true,
"enable_thinking": true,
"stream": true
}'响应示例
data: {"choices":[{"delta":{"content":null,"role":"assistant","reasoning_content":""},"index":0,"logprobs":null,"finish_reason":null}],"object":"chat.completion.chunk","usage":null,"created":1761899724,"system_fingerprint":null,"model":"qwen3-max-2026-01-23","id":"chatcmpl-2f96ef0b-5924-4dfc-b768-4d53ec538b4e"}
data: {"choices":[{"finish_reason":null,"logprobs":null,"delta":{"content":null,"reasoning_content":"用户"},"index":0}],"object":"chat.completion.chunk","usage":null,"created":1761899724,"system_fingerprint":null,"model":"qwen3-max-2026-01-23","id":"chatcmpl-2f96ef0b-5924-4dfc-b768-4d53ec538b4e"}
data: {"choices":[{"delta":{"content":null,"reasoning_content":"问"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1761899724,"system_fingerprint":null,"model":"qwen3-max-2026-01-23","id":"chatcmpl-2f96ef0b-5924-4dfc-b768-4d53ec538b4e"}
data: {"choices":[{"delta":{"content":null,"reasoning_content":"的是"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1761899724,"system_fingerprint":null,"model":"qwen3-max-2026-01-23","id":"chatcmpl-2f96ef0b-5924-4dfc-b768-4d53ec538b4e"}
...
data: {"choices":[{"delta":{"content":"非常大的数字,总","reasoning_content":null},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1761899724,"system_fingerprint":null,"model":"qwen3-max-2026-01-23","id":"chatcmpl-2f96ef0b-5924-4dfc-b768-4d53ec538b4e"}
data: {"choices":[{"delta":{"content":"共有43位","reasoning_content":null},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1761899724,"system_fingerprint":null,"model":"qwen3-max-2026-01-23","id":"chatcmpl-2f96ef0b-5924-4dfc-b768-4d53ec538b4e"}
data: {"choices":[{"delta":{"content":"。","reasoning_content":null},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1761899724,"system_fingerprint":null,"model":"qwen3-max-2026-01-23","id":"chatcmpl-2f96ef0b-5924-4dfc-b768-4d53ec538b4e"}
data: {"choices":[{"finish_reason":"stop","delta":{"content":"","reasoning_content":null},"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1761899724,"system_fingerprint":null,"model":"qwen3-max-2026-01-23","id":"chatcmpl-2f96ef0b-5924-4dfc-b768-4d53ec538b4e"}
data: [DONE]DashScope
不支持 Java SDK。
Python
import os
import dashscope
# 如需使用国际地域模型,请取消下行注释
# dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'
messages = [
{"role": "user", "content": "123的21次方是多少?"},
]
response = dashscope.Generation.call(
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
model="qwen3-max-2026-01-23",
messages=messages,
enable_code_interpreter=True,
enable_thinking=True,
result_format="message",
# 仅支持流式输出
stream=True
)
for chunk in response:
output = chunk["output"]
print(output)响应示例
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": "The"}}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": " user is asking"}}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": " me"}}]}
...
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": " I'll write a"}}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": " simple Python program to calculate"}}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": ""}}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": ""}}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": ""}}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": ""}}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": ""}}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": "The"}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": " user"}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": " asked"}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
...
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": " I should present this result"}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": " to the user in"}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "", "reasoning_content": " a clear format."}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "123的", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "21次方是:\n\n", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "772693", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "644665", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "498656", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "530734", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "733880", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "300615", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "222117", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "null", "message": {"role": "assistant", "content": "23", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}
{"text": null, "finish_reason": null, "choices": [{"finish_reason": "stop", "message": {"role": "assistant", "content": "", "reasoning_content": ""}}], "tool_info": [{"code_interpreter": {"code": "123**21"}, "type": "code_interpreter"}]}curl
curl -X POST https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-H "X-DashScope-SSE: enable" \
-d '{
"model": "qwen3-max-2026-01-23",
"input":{
"messages":[
{
"role": "user",
"content": "123的21次方是多少?"
}
]
},
"parameters": {
"enable_code_interpreter": true,
"enable_thinking": true,
"result_format": "message"
}
}'响应示例
<...文字内容...>为说明性注释,非实际 API 响应,用于标识处理阶段。
id:1
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"","reasoning_content":"The","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":290,"output_tokens":3,"input_tokens":287,"output_tokens_details":{"reasoning_tokens":1}},"request_id":"a1959ad1-2637-4672-a21f-4d351371d254"}
id:2
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"","reasoning_content":" user is asking","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":293,"output_tokens":6,"input_tokens":287,"output_tokens_details":{"reasoning_tokens":4}},"request_id":"a1959ad1-2637-4672-a21f-4d351371d254"}
...思考阶段...
id:21
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"","reasoning_content":"","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":388,"output_tokens":101,"input_tokens":287,"output_tokens_details":{"reasoning_tokens":68}},"request_id":"a1959ad1-2637-4672-a21f-4d351371d254"}
...思考结束开始运行代码解释器...
id:22
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"","reasoning_content":"","role":"assistant"},"finish_reason":"null"}],"tool_info":[{"code_interpreter":{"code":"123**21"},"type":"code_interpreter"}]},"usage":{"total_tokens":388,"output_tokens":101,"input_tokens":287,"output_tokens_details":{"reasoning_tokens":68},"plugins":{"code_interpreter":{"count":1}}},"request_id":"a1959ad1-2637-4672-a21f-4d351371d254"}
...运行代码解释器后开始思考...
id:23
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"","reasoning_content":"The","role":"assistant"},"finish_reason":"null"}],"tool_info":[{"code_interpreter":{"code":"123**21"},"type":"code_interpreter"}]},"usage":{"total_tokens":838,"output_tokens":104,"input_tokens":734,"output_tokens_details":{"reasoning_tokens":69},"plugins":{"code_interpreter":{"count":1}}},"request_id":"a1959ad1-2637-4672-a21f-4d351371d254"}
id:24
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"","reasoning_content":" user","role":"assistant"},"finish_reason":"null"}],"tool_info":[{"code_interpreter":{"code":"123**21"},"type":"code_interpreter"}]},"usage":{"total_tokens":839,"output_tokens":105,"input_tokens":734,"output_tokens_details":{"reasoning_tokens":70},"plugins":{"code_interpreter":{"count":1}}},"request_id":"a1959ad1-2637-4672-a21f-4d351371d254"}
...思考阶段...
id:43
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"","reasoning_content":" a clear format.","role":"assistant"},"finish_reason":"null"}],"tool_info":[{"code_interpreter":{"code":"123**21"},"type":"code_interpreter"}]},"usage":{"total_tokens":942,"output_tokens":208,"input_tokens":734,"output_tokens_details":{"reasoning_tokens":171},"plugins":{"code_interpreter":{"count":1}}},"request_id":"a1959ad1-2637-4672-a21f-4d351371d254"}
...思考结束,开始回复...
id:44
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"123的","reasoning_content":"","role":"assistant"},"finish_reason":"null"}],"tool_info":[{"code_interpreter":{"code":"123**21"},"type":"code_interpreter"}]},"usage":{"total_tokens":947,"output_tokens":213,"input_tokens":734,"output_tokens_details":{"reasoning_tokens":171},"plugins":{"code_interpreter":{"count":1}}},"request_id":"a1959ad1-2637-4672-a21f-4d351371d254"}
...
id:53
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"23","reasoning_content":"","role":"assistant"},"finish_reason":"null"}],"tool_info":[{"code_interpreter":{"code":"123**21"},"type":"code_interpreter"}]},"usage":{"total_tokens":997,"output_tokens":263,"input_tokens":734,"output_tokens_details":{"reasoning_tokens":171},"plugins":{"code_interpreter":{"count":1}}},"request_id":"a1959ad1-2637-4672-a21f-4d351371d254"}
id:54
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"","reasoning_content":"","role":"assistant"},"finish_reason":"stop"}],"tool_info":[{"code_interpreter":{"code":"123**21"},"type":"code_interpreter"}]},"usage":{"total_tokens":997,"output_tokens":263,"input_tokens":734,"output_tokens_details":{"reasoning_tokens":171},"plugins":{"code_interpreter":{"count":1}}},"request_id":"a1959ad1-2637-4672-a21f-4d351371d254"}响应解析
OpenAI 兼容-Responses API
以下示例使用 OpenAI Python SDK,演示如何在流式响应中解析 API 返回的数据。
import os
from openai import OpenAI
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/api/v2/apps/protocols/compatible-mode/v1"
)
response = client.responses.create(
model="qwen3-max-2026-01-23",
input="12的3次方",
tools=[
{"type": "code_interpreter"}
],
extra_body={
"enable_thinking": True
},
stream=True
)
def print_section(title):
print(f"\n{'=' * 20}{title}{'=' * 20}")
current_section = None
final_response = None
for event in response:
# 思考过程增量输出
if event.type == "response.reasoning_summary_text.delta":
if current_section != "reasoning":
print_section("思考过程")
current_section = "reasoning"
print(event.delta, end="", flush=True)
# 代码解释器调用完成
elif event.type == "response.output_item.done" and hasattr(event.item, "code"):
print_section("代码执行")
print(f"代码:\n{event.item.code}")
if event.item.outputs:
print(f"结果: {event.item.outputs[0].logs}")
current_section = "code"
# 最终回复增量输出
elif event.type == "response.output_text.delta":
if current_section != "answer":
print_section("完整回复")
current_section = "answer"
print(event.delta, end="", flush=True)
# 响应完成,保存最终结果用于获取 usage
elif event.type == "response.completed":
final_response = event.response
# 输出 Token 消耗和工具调用次数
if final_response and final_response.usage:
print_section("Token 消耗与工具调用")
usage = final_response.usage
print(f"输入 Token: {usage.input_tokens}")
print(f"输出 Token: {usage.output_tokens}")
print(f"思考 Token: {usage.output_tokens_details.reasoning_tokens}")
print(f"代码解释器调用次数: {usage.x_tools.get('code_interpreter', {}).get('count', 0)}")DashScope
以下 DashScope Python SDK 示例演示:在单次请求中执行两次计算,并返回代码及总调用次数。
由于 OpenAI Chat Completions API 在代码执行阶段不返回数据,思考与结果整合阶段之间会出现响应空窗。又因两个阶段均通过 reasoning_content返回内容,可统一视为思考阶段处理。响应解析示例请参见快速开始代码。import os
from dashscope import Generation
# 如需使用国际地域模型,请取消下行注释
# dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'
messages = [{"role": "user", "content": "运行两次代码解释器:第一次运行请计算123的23次方的值,第二次运行请将前者的结果除以5"}]
response = Generation.call(
api_key=os.getenv("DASHSCOPE_API_KEY"),
model="qwen3-max-2026-01-23",
messages=messages,
result_format="message",
enable_thinking=True,
enable_code_interpreter=True,
stream=True,
incremental_output=True,
)
# 状态标志:跟踪是否已打印工具信息、是否进入回答阶段、是否在推理段
is_answering = False
in_reasoning_section = False
cur_tools = []
# 打印带标题的分隔区域
def print_section(title):
print(f"\n{'=' * 20}{title}{'=' * 20}")
# 初始打印“思考过程”标题
print_section("思考过程")
in_reasoning_section = True
# 流式处理模型返回的每个数据块
for chunk in response:
try:
# 提取响应中的关键字段:内容、推理文本、工具调用信息
choice = chunk.output.choices[0]
msg = choice.message
content = msg.get("content", "") # 最终回答内容
reasoning = msg.get("reasoning_content", "") # 推理过程文本
tools = chunk.output.get("tool_info", None) # 工具调用信息
except (IndexError, AttributeError, KeyError):
# 跳过结构异常的数据块
continue
# 若无有效内容,跳过当前块
if not content and not reasoning and tools is None:
continue
# 输出推理过程
if reasoning and not is_answering:
if not in_reasoning_section:
print_section("思考过程")
in_reasoning_section = True
print(reasoning, end="", flush=True)
if tools is not None and tools != cur_tools:
print_section("工具信息")
print(tools)
in_reasoning_section = False
cur_tools = tools
# 输出最终回答内容
if content:
if not is_answering:
print_section("完整回复")
is_answering = True
in_reasoning_section = False
print(content, end="", flush=True)
# 打印代码解释器调用次数
print_section("代码解释器运行次数")
print(chunk.usage.plugins)响应示例
====================思考过程====================
用户要求运行两次代码解释器:
1. 第一次运行:计算123的23次方的值
2. 第二次运行:将前者的结果除以5
我需要先调用代码解释器计算123**23,然后用这个结果再调用一次代码解释器除以5。
让我先做第一次计算。
====================工具信息====================
[{'code_interpreter': {'code': '123**23'}, 'type': 'code_interpreter'}]
====================思考过程====================
第一次计算得到了123的23次方的值:1169008215014432917465348578887506800769541157267
现在需要第二次运行,将这个结果除以5。我需要使用这个确切的数值进行除法运算
====================工具信息====================
[{'code_interpreter': {'code': '123**23'}, 'type': 'code_interpreter'}, {'code_interpreter': {'code': ''}, 'type': 'code_interpreter'}]
====================工具信息====================
[{'code_interpreter': {'code': '123**23'}, 'type': 'code_interpreter'}, {'code_interpreter': {'code': '1169008215014432917465348578887506800769541157267 / 5'}, 'type': 'code_interpreter'}]
====================思考过程====================
用户要求运行两次代码解释器:
1. 第一次计算123的23次方,结果是:1169008215014432917465348578887506800769541157267
2. 第二次将这个结果除以5,得到:2.338016430028866e+47
现在我需要向用户报告这两个
====================完整回复====================
第一次运行结果:123的23次方 = 1169008215014432917465348578887506800769541157267
第二次运行结果:将上述结果除以5 = 2.338016430028866e+47
====================代码解释器运行次数====================
{'code_interpreter': {'count': 2}}注意事项
代码解释器与 Function Calling 互斥,不可同时启用。
同时启用会报错。
启用代码解释器后,单次请求会触发多次模型推理,
usage字段汇总所有调用的 Token 消耗。
计费说明
启用代码解释器工具限时免费,但会增加 Token 消耗。