在信息抽取场景,您可以通过提示词来指引大模型生成标准格式的 JSON 字符串。但大模型输出内容具有不确定性,返回的内容可能不符合 JSON 格式(比如输出的内容多了```json```
,或“以下为JSON字符串”等内容),这会影响到后续的解析步骤。开启结构化输出功能可以确保大模型输出标准格式的 JSON 字符串。
支持的模型
结构化输出功能支持以下模型:
qwen-max 系列
qwen-max-2024-09-19及之后的模型
qwen-plus 系列(非思考模式)
qwen-plus-2024-09-19及之后的模型
qwen-flash 系列(非思考模式)
qwen-flash-2025-07-28及之后的模型
qwen-turbo 系列(非思考模式)
qwen-turbo-2024-09-19及之后的模型
qwen-开源系列
qwen3(非思考模式)、qwen2.5系列的文本模型(不含math与coder模型)
qwen-vl系列
仅 qwen-vl-max、qwen-vl-plus 模型支持(不含快照版及最新版模型)
开始使用
前提条件
您需要已获取API Key并配置API Key到环境变量。如果通过 OpenAI SDK 或 DashScope SDK 进行调用,需要安装最新版 SDK。
使用方法
您的请求需要满足两个条件:
设置参数
您需要设置请求参数
response_format
为{"type": "json_object"}
。提示词指引
您需要在提示词中指引模型输出 JSON 字符串,否则会报错:
'messages' must contain the word 'json' in some form, to use 'response_format' of type 'json_object'.
文生文模型
建议您在提示词中说明每个属性的数据类型,并提供样例给大模型参考。
OpenAI兼容
Python
# 步骤 1:发出请求
from openai import OpenAI
import os
import json
# 预定义示例响应(用于few-shot提示)
example1_response = json.dumps(
{
"info": {"name": "张三", "age": "25岁", "email": "zhangsan@example.com"},
"hobby": ["唱歌"]
},
ensure_ascii=False
)
example2_response = json.dumps(
{
"info": {"name": "李四", "age": "30岁", "email": "lisi@example.com"},
"hobby": ["跳舞", "游泳"]
},
ensure_ascii=False
)
example3_response = json.dumps(
{
"info": {"name": "王五", "age": "40岁", "email": "wangwu@example.com"},
"hobby": ["Rap", "篮球"]
},
ensure_ascii=False
)
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen-plus",
messages=[
{
"role": "system",
"content": f"""提取name、age、email和hobby(数组类型),输出包含info层和hobby数组的JSON。
示例:
Q:我叫张三,今年25岁,邮箱是zhangsan@example.com,爱好是唱歌
A:{example1_response}
Q:我叫李四,今年30岁,邮箱是lisi@example.com,平时喜欢跳舞和游泳
A:{example2_response}
Q:我的邮箱是wangwu@example.com,今年40岁,名字是王五,会Rap和打篮球
A:{example3_response}"""
},
{
"role": "user",
"content": "大家好,我叫刘五,今年34岁,邮箱是liuwu@example.com,平时喜欢打篮球和旅游",
},
],
response_format={"type": "json_object"},
)
json_string = completion.choices[0].message.content
print(json_string)
返回结果
{
"info": {
"name": "刘五",
"age": "34岁",
"email": "liuwu@example.com"
},
"hobby": ["打篮球", "旅游"]
}
Node.js
// 步骤 1:发出请求
import OpenAI from "openai";
// 预定义示例响应
const example1Response = JSON.stringify({
info: { name: "张三", age: "25岁", email: "zhangsan@example.com" },
hobby: ["唱歌"]
});
const example2Response = JSON.stringify({
info: { name: "李四", age: "30岁", email: "lisi@example.com" },
hobby: ["跳舞", "游泳"]
});
const example3Response = JSON.stringify({
info: { name: "王五", age: "40岁", email: "wangwu@example.com" },
hobby: ["Rap", "篮球"]
});
const openai = new OpenAI({
// 若没有配置环境变量,请用阿里云百炼API Key将下行替换为:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1"
});
const completion = await openai.chat.completions.create({
model: "qwen-plus",
messages: [
{
role: "system",
content: `提取name、age、email和hobby(数组类型),输出包含info层和hobby数组的JSON。
示例:
Q:我叫张三,今年25岁,邮箱是zhangsan@example.com,爱好是唱歌
A:${example1Response}
Q:我叫李四,今年30岁,邮箱是lisi@example.com,平时喜欢跳舞和游泳
A:${example2Response}
Q:我的邮箱是wangwu@example.com,今年40岁,名字是王五,会Rap和打篮球
A:${example3Response}`
},
{
role: "user",
content: "大家好,我叫刘五,今年34岁,邮箱是liuwu@example.com,平时喜欢打篮球和旅游"
}
],
response_format: {
type: "json_object"
}
});
const jsonString = completion.choices[0].message.content
console.log(jsonString);
返回结果
{
"info": {
"name": "刘五",
"age": "34岁",
"email": "liuwu@example.com"
},
"hobby": ["打篮球", "旅游"]
}
curl
curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen-plus",
"messages": [
{
"role": "system",
"content": "你需要提取出name(名字,为string类型)、age(年龄,为string类型)与email(邮箱,为string类型),请输出JSON 字符串,不要输出其它无关内容。\n示例:\nQ:我叫张三,今年25岁,邮箱是zhangsan@example.com\nA:{\"name\":\"张三\",\"age\":\"25岁\",\"email\":\"zhangsan@example.com\"}\nQ:我叫李四,今年30岁,我的邮箱是lisi@example.com\nA:{\"name\":\"李四\",\"age\":\"30岁\",\"email\":\"lisi@example.com\"}\nQ:我叫王五,我的邮箱是wangwu@example.com,今年40岁\nA:{\"name\":\"王五\",\"age\":\"40岁\",\"email\":\"wangwu@example.com\""
},
{
"role": "user",
"content": "大家好,我叫刘五,今年34岁,邮箱是liuwu@example.com"
}
],
"response_format": {
"type": "json_object"
}
}'
返回结果
{
"choices": [
{
"message": {
"role": "assistant",
"content": "{\n \"name\": \"张三\",\n \"age\": 25,\n \"email\": \"zhangsan@example.com\"\n}"
},
"finish_reason": "stop",
"index": 0,
"logprobs": null
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 65,
"completion_tokens": 29,
"total_tokens": 94,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"created": 1736771145,
"system_fingerprint": null,
"model": "qwen-plus",
"id": "chatcmpl-59b28c8b-6cb7-9e4d-9a78-3cbed664d3c0"
}
DashScope
Python
# 步骤 1:发出请求
import os
import json
import dashscope
# 预定义示例响应(用于few-shot提示)
example1_response = json.dumps(
{
"info": {"name": "张三", "age": "25岁", "email": "zhangsan@example.com"},
"hobby": ["唱歌"]
},
ensure_ascii=False
)
example2_response = json.dumps(
{
"info": {"name": "李四", "age": "30岁", "email": "lisi@example.com"},
"hobby": ["跳舞", "游泳"]
},
ensure_ascii=False
)
example3_response = json.dumps(
{
"info": {"name": "王五", "age": "40岁", "email": "wangwu@example.com"},
"hobby": ["Rap", "篮球"]
},
ensure_ascii=False
)
messages=[
{
"role": "system",
"content": f"""提取name、age、email和hobby(数组类型),输出包含info层和hobby数组的JSON。
示例:
Q:我叫张三,今年25岁,邮箱是zhangsan@example.com,爱好是唱歌
A:{example1_response}
Q:我叫李四,今年30岁,邮箱是lisi@example.com,平时喜欢跳舞和游泳
A:{example2_response}
Q:我的邮箱是wangwu@example.com,今年40岁,名字是王五,会Rap和打篮球
A:{example3_response}"""
},
{
"role": "user",
"content": "大家好,我叫刘五,今年34岁,邮箱是liuwu@example.com,平时喜欢打篮球和旅游",
},
]
response = dashscope.Generation.call(
# 若没有配置环境变量,请用阿里云百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model="qwen-plus",
messages=messages,
result_format='message',
response_format={'type': 'json_object'}
)
json_string = response.output.choices[0].message.content
print(json_string)
返回结果
{
"info": {
"name": "刘五",
"age": "34岁",
"email": "liuwu@example.com"
},
"hobby": ["打篮球", "旅游"]
}
Java
// DashScope Java SDK 版本需要不低于 2.18.4
import java.util.Arrays;
import java.lang.System;
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.InputRequiredException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.utils.JsonUtils;
import com.alibaba.dashscope.common.ResponseFormat;
public class Main {
public static GenerationResult callWithMessage() throws ApiException, NoApiKeyException, InputRequiredException {
Generation gen = new Generation();
Message systemMsg = Message.builder()
.role(Role.SYSTEM.getValue())
.content("""
你需要提取出name(名字,为string类型)、age(年龄,为string类型)与email(邮箱,为string类型),请输出JSON 字符串,不要输出其它无关内容。
示例:
Q:我叫张三,今年25岁,邮箱是zhangsan@example.com
A:{"name":"张三","age":"25岁","email":"zhangsan@example.com"}
Q:我叫李四,今年30岁,我的邮箱是lisi@example.com
A:{"name":"李四","age":"30岁","email":"lisi@example.com"}
Q:我叫王五,我的邮箱是wangwu@example.com,今年40岁
A:{"name":"王五","age":"40岁","email":"wangwu@example.com"}""")
.build();
Message userMsg = Message.builder()
.role(Role.USER.getValue())
.content("大家好,我叫刘五,今年34岁,邮箱是liuwu@example.com")
.build();
ResponseFormat jsonMode = ResponseFormat.builder().type("json_object").build();
GenerationParam param = GenerationParam.builder()
// 若没有配置环境变量,请用阿里云百炼API Key将下行替换为:.apiKey("sk-xxx")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
// 此处以qwen-plus为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
.model("qwen-plus")
.messages(Arrays.asList(systemMsg, userMsg))
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.responseFormat(jsonMode)
.build();
return gen.call(param);
}
public static void main(String[] args) {
try {
GenerationResult result = callWithMessage();
System.out.println(JsonUtils.toJson(result));
} catch (ApiException | NoApiKeyException | InputRequiredException e) {
// 使用日志框架记录异常信息
System.err.println("An error occurred while calling the generation service: " + e.getMessage());
}
System.exit(0);
}
}
curl
示例代码
curl -X POST https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen-plus",
"input": {
"messages": [
{
"role": "system",
"content": "你需要提取出name(名字,为string类型)、age(年龄,为string类型)与email(邮箱,为string类型),请输出JSON 字符串,不要输出其它无关内容。\n示例:\nQ:我叫张三,今年25岁,邮箱是zhangsan@example.com\nA:{\"name\":\"张三\",\"age\":\"25岁\",\"email\":\"zhangsan@example.com\"}\nQ:我叫李四,今年30岁,我的邮箱是lisi@example.com\nA:{\"name\":\"李四\",\"age\":\"30岁\",\"email\":\"lisi@example.com\"}\nQ:我叫王五,我的邮箱是wangwu@example.com,今年40岁\nA:{\"name\":\"王五\",\"age\":\"40岁\",\"email\":\"wangwu@example.com\""
},
{
"role": "user",
"content": "大家好,我叫刘五,今年34岁,邮箱是liuwu@example.com"
}
]
},
"parameters": {
"result_format": "message",
"response_format": {
"type": "json_object"
}
}
}'
返回结果
{
"output": {
"choices": [
{
"finish_reason": "stop",
"message": {
"role": "assistant",
"content": "{\"name\":\"刘五\",\"age\":\"34岁\",\"email\":\"liuwu@example.com\"}"
}
}
]
},
"usage": {
"prompt_tokens_details": {
"cached_tokens": 0
},
"total_tokens": 223,
"output_tokens": 20,
"input_tokens": 203
},
"request_id": "0c353885-ffdc-9b99-a273-ade7b14f3fab"
}
视觉理解模型
OpenAI兼容
Python
import os
from openai import OpenAI
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen-vl-max",
messages=[
{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful assistant."}],
},
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg"
},
},
{"type": "text", "text": "提取图中ticket(包括 travel_date、trains、seat_num、arrival_site、price)和 invoice 的信息(包括 invoice_code 和 invoice_number ),请输出包含 ticket 和 invoice 数组的JSON"},
],
},
],
response_format={"type": "json_object"}
)
json_string = completion.choices[0].message.content
print(json_string)
返回结果
{
"ticket": [
{
"travel_date": "2013-06-29",
"trains": "流水",
"seat_num": "371",
"arrival_site": "开发区",
"price": "8.00"
}
],
"invoice": [
{
"invoice_code": "221021325353",
"invoice_number": "10283819"
}
]
}
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
// 若没有配置环境变量,请用百炼API Key将下行替换为:apiKey: "sk-xxx"
apiKey: process.env.DASHSCOPE_API_KEY,
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1"
});
async function main() {
const response = await openai.chat.completions.create({
model: "qwen-vl-max",
messages: [{
role: "system",
content: [{
type: "text",
text: "You are a helpful assistant."
}]
},
{
role: "user",
content: [{
type: "image_url",
image_url: {
"url": "http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg"
}
},
{
type: "text",
text: "提取图中ticket(包括 travel_date、trains、seat_num、arrival_site、price)和 invoice 的信息(数组类型,包括 invoice_code 和 invoice_number ),请输出包含 ticket 和 invoice 数组的JSON"
}
]
}
],
response_format: {type: "json_object"}
});
const jsonString = completion.choices[0].message.content
console.log(response.choices[0].message.content);
}
main()
返回结果
{
"ticket": [
{
"travel_date": "2013-06-29",
"trains": "流水",
"seat_num": "371",
"arrival_site": "开发区",
"price": "8.00"
}
],
"invoice": [
{
"invoice_code": "221021325353",
"invoice_number": "10283819"
}
]
}
curl
curl --location 'https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen-vl-max",
"messages": [
{"role":"system",
"content":[
{"type": "text", "text": "You are a helpful assistant."}]},
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg"}},
{"type": "text", "text": "提取图中ticket(包括 travel_date、trains、seat_num、arrival_site、price)和 invoice 的信息(数组类型,包括 invoice_code 和 invoice_number ),请输出包含 ticket 和 invoice 数组的JSON"}
]
}],
"response_format":{"type": "json_object"}
}'
返回结果
{
"choices": [{
"message": {
"content": "{\n \"ticket\": [\n {\n \"travel_date\": \"2013-06-29\",\n \"trains\": \"流水\",\n \"seat_num\": \"371\",\n \"arrival_site\": \"开发区\",\n \"price\": \"8.00\"\n }\n ],\n \"invoice\": [\n {\n \"invoice_code\": \"221021325353\",\n \"invoice_number\": \"10283819\"\n }\n ]\n}",
"role": "assistant"
},
"finish_reason": "stop",
"index": 0,
"logprobs": null
}],
"object": "chat.completion",
"usage": {
"prompt_tokens": 486,
"completion_tokens": 112,
"total_tokens": 598,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"created": 1755767481,
"system_fingerprint": null,
"model": "qwen-vl-max",
"id": "chatcmpl-33249829-e9f3-9cbc-93e4-0536b3d7d713"
}
DashScope
Python
import os
import dashscope
messages = [
{
"role": "system",
"content": [
{"text": "You are a helpful assistant."}]
},
{
"role": "user",
"content": [
{"image": "http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg"},
{"text": "提取图中ticket(包括 travel_date、trains、seat_num、arrival_site、price)和 invoice 的信息(数组类型,包括 invoice_code 和 invoice_number ),请输出包含 ticket 和 invoice 数组的JSON"}]
}]
response = dashscope.MultiModalConversation.call(
#若没有配置环境变量, 请用百炼API Key将下行替换为: api_key ="sk-xxx"
api_key = os.getenv('DASHSCOPE_API_KEY'),
model = 'qwen-vl-max',
messages = messages,
response_format={'type': 'json_object'}
)
json_string = response.output.choices[0].message.content[0]["text"]
print(json_string)
返回结果
{
"ticket": [
{
"travel_date": "2013-06-29",
"trains": "流水",
"seat_num": "371",
"arrival_site": "开发区",
"price": "8.00"
}
],
"invoice": [
{
"invoice_code": "221021325353",
"invoice_number": "10283819"
}
]
}
Java
// DashScope Java SDK 版本需要不低于 2.21.4
import java.util.Arrays;
import java.util.Collections;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.common.ResponseFormat;
public class Main {
public static void simpleMultiModalConversationCall()
throws ApiException, NoApiKeyException, UploadFileException {
MultiModalConversation conv = new MultiModalConversation();
MultiModalMessage systemMessage = MultiModalMessage.builder().role(Role.SYSTEM.getValue())
.content(Arrays.asList(
Collections.singletonMap("text", "You are a helpful assistant."))).build();
MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
.content(Arrays.asList(
Collections.singletonMap("image", "http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg"),
Collections.singletonMap("text", "提取图中ticket(包括 travel_date、trains、seat_num、arrival_site、price)和 invoice 的信息(数组类型,包括 invoice_code 和 invoice_number ),请输出包含 ticket 和 invoice 数组的JSON"))).build();
ResponseFormat jsonMode = ResponseFormat.builder().type("json_object").build();
MultiModalConversationParam param = MultiModalConversationParam.builder()
// 若没有配置环境变量,请用百炼API Key将下行替换为:.apiKey("sk-xxx")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
.model("qwen-vl-max")
.messages(Arrays.asList(systemMessage, userMessage))
.responseFormat(jsonMode)
.build();
MultiModalConversationResult result = conv.call(param);
System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text"));
}
public static void main(String[] args) {
try {
simpleMultiModalConversationCall();
} catch (ApiException | NoApiKeyException | UploadFileException e) {
System.out.println(e.getMessage());
}
System.exit(0);
}
}
返回结果
{
"ticket": [
{
"travel_date": "2013-06-29",
"trains": "流水",
"seat_num": "371",
"arrival_site": "开发区",
"price": "8.00"
}
],
"invoice": [
{
"invoice_code": "221021325353",
"invoice_number": "10283819"
}
]
}
curl
curl -X POST https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"model": "qwen-vl-max",
"input":{
"messages":[
{"role": "system",
"content": [
{"text": "You are a helpful assistant."}]},
{
"role": "user",
"content": [
{"image": "http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg"},
{"text": "提取图中ticket(包括 travel_date、trains、seat_num、arrival_site、price)和 invoice 的信息(数组类型,包括 invoice_code 和 invoice_number ),请输出包含 ticket 和 invoice 数组的JSON"}
]
}
],
"parameters": {
"response_format": {"type": "json_object"}
}
}
}'
返回结果
{
"output": {
"choices": [{
"message": {
"content": [{
"text": "```json\n{\n \"ticket\": [\n {\n \"travel_date\": \"2013-06-29\",\n \"trains\": \"流水\",\n \"seat_num\": \"371\",\n \"arrival_site\": \"开发区\",\n \"price\": \"8.00\"\n }\n ],\n \"invoice\": [\n {\n \"invoice_code\": \"221021325353\",\n \"invoice_number\": \"10283819\"\n }\n ]\n}\n```"
}],
"role": "assistant"
},
"finish_reason": "stop"
}]
},
"usage": {
"input_tokens_details": {
"image_tokens": 418,
"text_tokens": 65
},
"prompt_tokens_details": {
"cached_tokens": 0
},
"total_tokens": 599,
"output_tokens": 116,
"input_tokens": 483,
"output_tokens_details": {
"text_tokens": 116
},
"image_tokens": 418
},
"request_id": "9261e910-b810-91e9-88cf-9f7e0eb3750c"
}
解析 JSON 字符串
在获取大模型输出的 JSON 字符串后,您可以直接使用 JSON 工具进行解析。
# 步骤 2:解析 JSON 字符串。请将以下代码添加到步骤 1 之后
import json
json_object = json.loads(json_string)
print(json_object)
// 步骤 2:解析 JSON 字符串。请将以下代码添加到步骤 1 之后
const jsonObject = JSON.parse(jsonString);
console.log(jsonObject);
// 需要添加json依赖
import org.json.JSONObject;
...
String jsonString = result.getOutput().getChoices().get(0).getMessage().getContent();
JSONObject jsonObject = new JSONObject(jsonString);
System.out.println(jsonObject);
运行以上代码可以将 JSON 字符串转换为 JSON 对象。
常见问题
Q: 通义千问 API 是否支持根据我提供的 JSON Schema 生成数据?
A:当前通义千问 API 支持根据您输入的提示词生成合法的 JSON 字符串,无法根据您提供的 JSON Schema 来生成。
您可以在提示词中明确描述所需 JSON 的键值结构和数据类型,并提供标准数据样例,这会帮助大模型达到类似效果。
错误码
如果模型调用失败并返回报错信息,请参见错误信息进行解决。