GetModelFeature - 获取模型特征详细信息

获取模型特征详细信息。

调试

您可以在OpenAPI Explorer中直接运行该接口,免去您计算签名的困扰。运行成功后,OpenAPI Explorer可以自动生成SDK代码示例。

授权信息

下表是API对应的授权信息,可以在RAM权限策略语句的Action元素中使用,用来给RAM用户或RAM角色授予调用此API的权限。具体说明如下:

  • 操作:是指具体的权限点。
  • 访问级别:是指每个操作的访问级别,取值为写入(Write)、读取(Read)或列出(List)。
  • 资源类型:是指操作中支持授权的资源类型。具体说明如下:
    • 对于必选的资源类型,用背景高亮的方式表示。
    • 对于不支持资源级授权的操作,用全部资源表示。
  • 条件关键字:是指云产品自身定义的条件关键字。
  • 关联操作:是指成功执行操作所需要的其他权限。操作者必须同时具备关联操作的权限,操作才能成功。
操作访问级别资源类型条件关键字关联操作
featurestore:GetModelFeatureget
*全部资源
*

请求语法

GET /api/v1/instances/{InstanceId}/modelfeatures/{ModelFeatureId} HTTP/1.1

请求参数

名称类型必填描述示例值
InstanceIdstring

实例 ID,可从接口 ListInstances 获取。

fs-cn-********
ModelFeatureIdstring

模型特征 ID,可从接口 ListModelFeatures 获取。

3

返回参数

名称类型描述示例值
object

Schema of Response

RequestIdstring

请求 ID。

0C89F5E1-7F24-5EEC-9F05-508A39278CC8
ProjectIdstring

项目 ID。

5
ProjectNamestring

项目名称。

project1
Namestring

模型特征名称。

model_feature1
Ownerstring

创建人的阿里云账号 ID。

1231243253****
GmtCreateTimestring

创建时间。

2023-07-04T14:46:22.227+08:00
GmtModifiedTimestring

更新时间。

2023-07-04T14:46:22.227+08:00
LabelTableIdstring

Label 表 ID。

3
LabelTableNamestring

Label 表名称。

label_table1
TrainingSetTablestring

导出训练集表的名称。

table1
TrainingSetFGTablestring

导出训练集 FG 表的名称。

table2
Featuresarray<object>

特征列表。

Featuresobject

特征。

FeatureViewIdstring

特征视图 ID。

3
FeatureViewNamestring

特征视图名称。

feature_view_1
Namestring

特征名称。

feature1
Typestring

特征类型。

● INT32

● INT64

● FLOAT

● DOUBLE

● STRING

● BOOLEAN

● TIMESTAMP

INT32
AliasNamestring

特征别名。

feature2
Relationsobject

特征关系。

Domainsarray<object>

Domain 列表。

Domainsobject
Idstring

Domain ID。

3
Namestring

Domain 名称。

feature_entity_1
DomainTypestring

Domain 类型。

● FeatureEntity-特征实体

● FeatureView-特征视图

● ModelFeature-模型特征

FeatureEntity
Linksobject
Fromstring

连接头 ID。

model_feature_2
Tostring

连接尾 ID。

feature_entity_3
ExportTrainingSetTableScriptstring

导出训练样本表脚本。

from feature_store_py.fs_client import FeatureStoreClient\nfrom feature_store_py.fs_project import FeatureStoreProject\nfrom feature_store_py.fs_datasource import LabelInput, MaxComputeDataSource, TrainingSetOutput\nfrom feature_store_py.fs_features import FeatureSelector\nfrom feature_store_py.fs_config import LabelInputConfig, PartitionConfig, FeatureViewConfig\nfrom feature_store_py.fs_config import TrainSetOutputConfig, EASDeployConfig\nimport datetime\nimport sys\n\ncur_day = args['dt']\nprint('cur_day = ', cur_day)\noffset = datetime.timedelta(days=-1)\npre_day = (datetime.datetime.strptime(cur_day, '%Y%m%d') + offset).strftime('%Y%m%d')\nprint('pre_day = ', pre_day)\n\n\naccess_key_id = o.account.access_id\naccess_key_secret = o.account.secret_access_key\nfs = FeatureStoreClient(access_key_id=access_key_id, access_key_secret=access_key_secret, region='cn-beijing')\ncur_project_name = 'p1'\nproject = fs.get_project(cur_project_name)\n\nlabel_partitions = PartitionConfig(name = 'ds', value = cur_day)\nlabel_input_config = LabelInputConfig(partition_config=label_partitions)\n\nfeature_view_1_partitions = PartitionConfig(name = 'ds', value = pre_day)\nfeature_view_1_config = FeatureViewConfig(name = 'user_fea',\npartition_config=feature_view_1_partitions)\n\nfeature_view_2_partitions = PartitionConfig(name = 'ds', value = pre_day)\nfeature_view_2_config = FeatureViewConfig(name = 'seq_fea',\npartition_config=feature_view_2_partitions)\n\nfeature_view_3_partitions = PartitionConfig(name = 'ds', value = pre_day)\nfeature_view_3_config = FeatureViewConfig(name = 'item_fea',\npartition_config=feature_view_3_partitions)\n\nfeature_view_config_list = [feature_view_1_config,feature_view_2_config,feature_view_3_config]\ntrain_set_partitions = PartitionConfig(name = 'ds', value = cur_day)\ntrain_set_output_config = TrainSetOutputConfig(partition_config=train_set_partitions)\n\n\nmodel_name = 'rank_v1'\ncur_model = project.get_model(model_name)\ntask = cur_model.export_train_set(label_input_config, feature_view_config_list, train_set_output_config)\ntask.wait()\nprint('task_summary = ', task.task_summary)\n
LabelPriorityLevellong

Label 表优先级,默认值为 0,设置为 1 表示 Label 表优先,设置为 2 表示 特征视图优先。

0

示例

正常返回示例

JSON格式

{
  "RequestId": "0C89F5E1-7F24-5EEC-9F05-508A39278CC8",
  "ProjectId": "5",
  "ProjectName": "project1",
  "Name": "model_feature1",
  "Owner": "1231243253****",
  "GmtCreateTime": "2023-07-04T14:46:22.227+08:00",
  "GmtModifiedTime": "2023-07-04T14:46:22.227+08:00",
  "LabelTableId": "3",
  "LabelTableName": "label_table1",
  "TrainingSetTable": "table1",
  "TrainingSetFGTable": "table2",
  "Features": [
    {
      "FeatureViewId": "3",
      "FeatureViewName": "feature_view_1",
      "Name": "feature1",
      "Type": "INT32",
      "AliasName": "feature2"
    }
  ],
  "Relations": {
    "Domains": [
      {
        "Id": "3",
        "Name": "feature_entity_1",
        "DomainType": "FeatureEntity"
      }
    ],
    "Links": [
      {
        "From": "model_feature_2",
        "To": "feature_entity_3",
        "Link": "user_id"
      }
    ]
  },
  "ExportTrainingSetTableScript": "from feature_store_py.fs_client import FeatureStoreClient\\nfrom feature_store_py.fs_project import FeatureStoreProject\\nfrom feature_store_py.fs_datasource import LabelInput, MaxComputeDataSource, TrainingSetOutput\\nfrom feature_store_py.fs_features import FeatureSelector\\nfrom feature_store_py.fs_config import LabelInputConfig, PartitionConfig, FeatureViewConfig\\nfrom feature_store_py.fs_config import TrainSetOutputConfig, EASDeployConfig\\nimport datetime\\nimport sys\\n\\ncur_day = args['dt']\\nprint('cur_day = ', cur_day)\\noffset = datetime.timedelta(days=-1)\\npre_day = (datetime.datetime.strptime(cur_day, '%Y%m%d') + offset).strftime('%Y%m%d')\\nprint('pre_day = ', pre_day)\\n\\n\\naccess_key_id = o.account.access_id\\naccess_key_secret = o.account.secret_access_key\\nfs = FeatureStoreClient(access_key_id=access_key_id, access_key_secret=access_key_secret, region='cn-beijing')\\ncur_project_name = 'p1'\\nproject = fs.get_project(cur_project_name)\\n\\nlabel_partitions = PartitionConfig(name = 'ds', value = cur_day)\\nlabel_input_config = LabelInputConfig(partition_config=label_partitions)\\n\\nfeature_view_1_partitions = PartitionConfig(name = 'ds', value = pre_day)\\nfeature_view_1_config = FeatureViewConfig(name = 'user_fea',\\npartition_config=feature_view_1_partitions)\\n\\nfeature_view_2_partitions = PartitionConfig(name = 'ds', value = pre_day)\\nfeature_view_2_config = FeatureViewConfig(name = 'seq_fea',\\npartition_config=feature_view_2_partitions)\\n\\nfeature_view_3_partitions = PartitionConfig(name = 'ds', value = pre_day)\\nfeature_view_3_config = FeatureViewConfig(name = 'item_fea',\\npartition_config=feature_view_3_partitions)\\n\\nfeature_view_config_list = [feature_view_1_config,feature_view_2_config,feature_view_3_config]\\ntrain_set_partitions = PartitionConfig(name = 'ds', value = cur_day)\\ntrain_set_output_config = TrainSetOutputConfig(partition_config=train_set_partitions)\\n\\n\\nmodel_name = 'rank_v1'\\ncur_model = project.get_model(model_name)\\ntask = cur_model.export_train_set(label_input_config, feature_view_config_list, train_set_output_config)\\ntask.wait()\\nprint('task_summary = ', task.task_summary)\\n",
  "LabelPriorityLevel": 0
}

错误码

访问错误中心查看更多错误码。

变更历史

变更时间变更内容概要操作
2024-09-03OpenAPI 返回结构发生变更查看变更详情
2024-01-29OpenAPI 返回结构发生变更查看变更详情