多语言版本分片模型

更新时间:

SchedulerX可以对多重任务进行调度(定时、编排、重刷历史数据等),提供Java、Python、Shell和Go等多语言分片模型,帮助您处理大数据业务需求。

背景信息

分片模型主要包含静态分片和动态分片。

  • 静态分片:主要场景是处理固定的分片数,例如分库分表中固定1024张表,需要若干台机器分布式去处理。

  • 动态分片:主要场景是分布式处理未知数据量的数据,例如一张大表在不停变更,需要分布式跑批。主流的框架为SchedulerX提供的MapReduce模型,目前还没有对外开源。

功能特性

多语言版本分片模型还具有以下特性。

  • 兼容elastic-job的静态分片模型。

  • 支持Java、Python、Shell、Go四种语言。

  • 高可用:分片模型基于MapReduce模型开发,可以继承MapReduce模型高可用特性,即某台worker执行过程中发生异常,master worker会把分片failover到其它slave节点执行。

  • 流量控制:分片模型基于MapReduce模型开发,可以继承MapReduce模型流量控制特性,即可以控制单机子任务并发度。例如有1000个分片,一共10台机器,可以控制最多5个分片并发跑,其它在队列中等待。

  • 分片自动失败重试:分片模型基于MapReduce模型开发,可以继承MapReduce模型子任务失败自动重试的特性。

可用性和流量控制可以在创建任务时的高级配置中设置,详情请参见创建调度任务任务管理高级配置参数说明

说明

只有1.1.0及以上版本客户端才支持多语言版本的分片模型。

Java分片任务

  1. 登录分布式任务调度平台
  2. 在顶部菜单栏选择地域。
  3. 在左侧导航栏,选择任务管理

  4. 任务管理页面,选择目标命名空间,在页面左上角单击创建任务

  5. 创建任务面板的基本配置页签,执行模式设置为分片运行,并配置分片参数,然后单击下一步

    分片参数之间以半角逗号(,)或换行分隔,例如分片号1=分片参数1,分片号2=分片参数2,...

    image

  6. 在应用程序代码中继承JavaProcessor,通过JobContext.getShardingId()获取分片号,通过JobContext.getShardingParameter()获取分片参数。

    示例:

    @Component
    public class HelloWorldProcessor extends JavaProcessor {
        @Override
        public ProcessResult process(JobContext context) throws Exception {
            System.out.println("分片id=" + context.getShardingId() + ", 分片参数=" + context.getShardingParameter());
            return new ProcessResult(true);
        }
    }
  7. 执行列表页面,单击目标任务操作列的详情,查看分片详情。

    分片任务实例详情

Python分片任务

Python应用想使用分布式跑批,只需要安装Agent。脚本可以由SchedulerX维护。

  1. 下载SchedulerX的Agent,并通过Agent部署脚本任务。

  2. 在SchedulerX中创建Python分片任务,更多信息,请参见创建调度任务

    sys.argv[1]为分片号,sys.argv[2]为分片参数。

    分片参数之间以半角逗号(,)或换行分隔,例如分片号1=分片参数1,分片号2=分片参数2,...

    Python 分片任务

  3. 执行列表页面,单击目标任务操作列的详情,查看分片详情。

    分片任务实例详情

Shell和Go分片任务

Shell和Go版本的分片任务和Python类似,创建步骤,请参见Python分片任务