本文着重介绍PolarDB-X 1.0执行计划中各个操作符的含义,以便用户通过查询计划了解SQL执行流程,从而有针对性的进行SQL调优。

执行计划介绍

与多数数据库系统类似,PolarDB-X 1.0在处理SQL时,会通过优化器生成执行计划,该执行计划由关系操作符构成一个树形结构,反映PolarDB-X 1.0如何执行SQL语句。不同的是,PolarDB-X 1.0本身不存储数据,更侧重考虑分布式环境中的网络IO开销,将运算下推到各个分库(如RDS/MySQL)执行,从而提升SQL执行效率。用户可通过EXPLAIN命令查看SQL的执行计划。

文中示例均基于如下表结构:

CREATE TABLE `sbtest1` (
  `id`  INT(10) UNSIGNED NOT NULL,
  `k`   INT(10) UNSIGNED NOT NULL DEFAULT '0',
  `c`   CHAR(120)        NOT NULL DEFAULT '',
  `pad` CHAR(60)         NOT NULL DEFAULT '',
  KEY `xid` (`id`),
  KEY `k_1` (`k`)
) dbpartition BY HASH (`id`) tbpartition BY HASH (`id`) tbpartitions 4
            

如下示例展示了PolarDB-X 1.0执行计划的树形结构。

explain select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;
+---------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                                                      |
+---------------------------------------------------------------------------------------------------------------------------------------------------+
| TmpSort(sort="cnt ASC", offset=?2, fetch=?3)                                                                                                      |
|   Filter(condition="cnt > ?1")                                                                                                                    |
|     Aggregate(group="k", cnt="COUNT()")                                                                                                           |
|       BKAJoin(id="id", k="k", c="c", pad="pad", id0="id0", k0="k0", c0="c0", pad0="pad0", condition="id = k", type="inner")                       |
|         Gather(sort="k ASC")                                                                                                                   |
|           LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` WHERE (`id` > ?) ORDER BY `k`")        |
|         Gather(concurrent=true)                                                                                                                 |
|           LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` WHERE ((`k` > ?) AND (`k` IN ('?')))") |
| HitCache:false                                                                                                                                    |
+---------------------------------------------------------------------------------------------------------------------------------------------------+
9 rows in set (0.01 sec)
            

PolarDB-X 1.0 EXPLAIN的结果总体分为两部分:执行计划和其他信息。

  • 执行计划:以缩进形式表示操作符之间的 "父-子" 关系。示例中,FilterTmpSort的子操作符,同时是Aggregate的父操作符。从真正执行的角度看,每个操作符均从其子操作符中获取数据,经当前操作符处理,输出给其父操作符。为方便理解,将以上执行计划转换为更加直观的树形结构:
    456789
  • 其他信息:除执行计划外,EXPLAIN结果中还会有一些额外信息,目前仅有一项HitCache 。需要说明的是,PolarDB-X 1.0会默认开启PlanCache功能,HitCache表示当前SQL是否命中PlanCache。 开启PlanCache后,PolarDB-X 1.0会对SQL做参数化处理,参数化会将SQL中的大部分常量用?替换,并构建一个参数列表。在执行计划中的体现就是,LogicalViewSQL中会有? ,在部分操作符中会有类似?2的字样,这里的2表示其在参数列表中的下标,后续会结合具体的例子进一步阐述。

EXPLAIN语法

EXPLAIN用于查看SQL语句的执行计划,语法如下:

EXPLAIN
{LOGICALVIEW | LOGIC | SIMPLE | DETAIL | EXECUTE | PHYSICAL | OPTIMIZER | SHARDING
 | COST | ANALYZE | BASELINE | JSON_PLAN | ADVISOR} 
 {SELECT statement | DELETE statement | INSERT statement | REPLACE statement| UPDATE statement}         

操作符介绍

LogicalView

LogicalView是从底层数据源获取数据的操作符。从数据库的角度来看,使用TableScan命名更符合常规,但考虑到PolarDB-X 1.0本身不存储数据,而是通过SQL从底层数据源获取,因此,该操作符中会记录下推的SQL语句和数据源信息,这更像一个 "视图"。该 "视图" 中的SQL,通过优化器的下推,可能包含多种操作,如投影、过滤、聚合、排序、连接和子查询等。

以下通过示例说明EXPLAINLogicalView的输出信息及其含义:

explain select * From sbtest1 where id > 1000;
+-----------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                          |
+-----------------------------------------------------------------------------------------------------------------------+
| UnionAll(concurrent=true)                                                                                             |
|   LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` WHERE (`id` > ?)") |
| HitCache:false                                                                                                        |
+-----------------------------------------------------------------------------------------------------------------------+
3 rows in set (0.00 sec)
            

LogicalView的信息由三部分构成:

  • tables:底层数据源对应的表名,以.分割,其前是分库对应的编号,其后是表名及其编号,对于连续的编号,会做简写,如[000-127],表示表名编号从000127的所有表。
  • shardCount:需要访问的分表总数,该示例中会访问从000127128张分表。
  • sql:下发至底层数据源的SQL模板。这里显示的并非真正下发的SQL语句,PolarDB-X 1.0在执行时会将表名替换为物理表名;另外,SQL中的常量10?替换,这是因为PolarDB-X 1.0默认开启了PlanCache功能,对SQL做了参数化处理。
UnionAll

UnionAllUNION ALL对应的操作符,该操作符通常有多个输入,表示将多个输入的数据UNION在一起。以上示例中,LogicalView之上的UnionAll表示将所有分表中的数据进行UNION。

UnionAll中的concurrent表示是否并行执行其子操作符,默认为true。

UnionDistinct

UnionAll类似,UnionDistinctUNION DISTINCT对应的操作符。示例如下:

explain select * From sbtest1 where id > 1000 union distinct select * From sbtest1 where id < 200;
+-------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                            |
+-------------------------------------------------------------------------------------------------------------------------+
| UnionDistinct(concurrent=true)                                                                                          |
|   UnionAll(concurrent=true)                                                                                             |
|     LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` WHERE (`id` > ?)") |
|   UnionAll(concurrent=true)                                                                                             |
|     LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` WHERE (`id` < ?)") |
| HitCache:false                                                                                                          |
+-------------------------------------------------------------------------------------------------------------------------+
6 rows in set (0.02 sec)
            
MergeSort

MergeSort,归并排序操作符,通常有多个子操作符。PolarDB-X 1.0中实现了两种排序:基于有序数据的归并排序和对无序数据的内存排序。示例如下:

explain select *from sbtest1 where id > 1000 order by id limit 5,10;
+---------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                                                      |
+---------------------------------------------------------------------------------------------------------------------------------------------------+
| MergeSort(sort="id ASC", offset=?1, fetch=?2)                                                                                                     |
|   LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` WHERE (`id` > ?) ORDER BY `id` LIMIT (? + ?)") |
| HitCache:false                                                                                                                                    |
+---------------------------------------------------------------------------------------------------------------------------------------------------+
3 rows in set (0.00 sec)
            

MergeSort操作符包含三部分内容:

  • sort:表示排序字段以及排列顺序,id ASC表示按照id字段递增排序,DESC表示递减排序。
  • offset:表示获取结果集时的偏移量,同样由于对SQL做了参数化,示例中的offset表示为?1 ,其中?表示这是一个动态参数,其后的数字对应参数列表的下标。示例中SQL对应的参数为[1000, 5, 10],因此,?1实际对应的值为5
  • fetch:表示最多返回的数据行数。与offset类似,同样是参数化的表示,实际对应的值为10
Aggregate

Aggregate是聚合操作符,通常包含两部分内容:Group By字段和聚合函数。示例如下:

explain select k, count(*) from sbtest1 where id > 1000 group by k;
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                                                                                |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Aggregate(group="k", count(*)="SUM(count(*))")                                                                                                                              |
|   MergeSort(sort="k ASC")                                                                                                                                                   |
|     LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT `k`, COUNT(*) AS `count(*)` FROM `sbtest1` WHERE (`id` > ?) GROUP BY `k` ORDER BY `k`") |
| HitCache:true                                                                                                                                                               |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
4 rows in set (0.00 sec)
            

Aggregate 包含两部分内容:

  • group:表示GROUP BY字段,示例中为k
  • 聚合函数:=前为聚合函数对应的输出列名,其后为对应的计算方法。示例中的count(*)="SUM(count(*))" ,第一个count(*)对应输出的列名,随后的SUM(count(*))表示对其输入数据中的count(*)列进行SUM运算得到最终的count(*)

由此可见,PolarDB-X 1.0将聚合操作分为两部分,首先将聚合操作下推至底层数据源做局部聚合,最终在PolarDB-X 1.0层面对局部聚合的结果做全局聚合。另外,PolarDB-X 1.0的最终聚合是基于排序做的,因此,会在优化器阶段为其添加一个Sort子操作符,而Sort操作符又进一步通过下推Sort转换为MergeSort

如下为AVG聚合函数的例子:

explain select k, avg(id) avg_id from sbtest1 where id > 1000 group by k;
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN|
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(k="k", avg_id="sum_pushed_sum / sum_pushed_count")|
|   Aggregate(group="k", sum_pushed_sum="SUM(pushed_sum)", sum_pushed_count="SUM(pushed_count)")|
|     MergeSort(sort="k ASC")|
|       LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT `k`, SUM(`id`) AS `pushed_sum`, COUNT(`id`) AS `pushed_count` FROM `sbtest1` WHERE (`id` > ?) GROUP BY `k` ORDER BY `k`")|
| HitCache:false|
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
5 rows in set (0.01 sec)
            

PolarDB-X 1.0会将AVG聚合函数转换为SUM / COUNT,再分别根据SUMCOUNT的下推规则,将其转换为局部聚合和全局聚合。您可自行尝试了解其他聚合函数的执行计划。

说明 PolarDB-X 1.0会将 DISTINCT操作转换为 GROUP操作,示例如下:
explain select distinct k from sbtest1 where id > 1000;
+-----------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                                                        |
+-----------------------------------------------------------------------------------------------------------------------------------------------------+
| Aggregate(group="k")                                                                                                                                |
|   MergeSort(sort="k ASC")                                                                                                                           |
|     LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT `k` FROM `sbtest1` WHERE (`id` > ?) GROUP BY `k` ORDER BY `k`") |
| HitCache:false                                                                                                                                      |
+-----------------------------------------------------------------------------------------------------------------------------------------------------+
4 rows in set (0.02 sec)
            
TmpSort

TmpSort,表示在内存中对数据进行排序。与MergeSort的区别在于,MergeSort可以有多个子操作符,且每个子操作符返回的数据都已经排序。TmpSort仅有一个子操作符。

TmpSort对应的查询计划信息与MergeSort一致,请参考MergeSort。

Project

Project表示投影操作,即从输入数据中选择部分列输出,或者对某些列进行转换(通过函数或者表达式计算)后输出,当然,也可以包含常量。以上AVG的示例中,最顶层就是一个Project,其输出ksum_pushed_sum / sum_pushed_count ,后者对应的列名为avg_id

explain select '你好, DRDS', 1 / 2, CURTIME();
+-------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                        |
+-------------------------------------------------------------------------------------+
| Project(你好, DRDS="_UTF-16'你好, DRDS'", 1 / 2="1 / 2", CURTIME()="CURTIME()") |
|                                                                                     |
| HitCache:false                                                                      |
+-------------------------------------------------------------------------------------+
3 rows in set (0.00 sec)
            

可见,Project的计划中包括每列的列名及其对应的列、值、函数或者表达式。

Filter

Filter表示过滤操作,其中包含一些过滤条件。该操作符对输入数据进行过滤,若满足条件,则输出,否则丢弃。如下是一个较复杂的例子,包含了以上介绍的大部分操作符。

explain select k, avg(id) avg_id from sbtest1 where id > 1000 group by k having avg_id > 1300;
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN  |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Filter(condition="avg_id > ?1")  |
|   Project(k="k", avg_id="sum_pushed_sum / sum_pushed_count")  |
|     Aggregate(group="k", sum_pushed_sum="SUM(pushed_sum)", sum_pushed_count="SUM(pushed_count)")  |
|       MergeSort(sort="k ASC")  |
|         LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT `k`, SUM(`id`) AS `pushed_sum`, COUNT(`id`) AS `pushed_count` FROM `sbtest1` WHERE (`id` > ?) GROUP BY `k` ORDER BY `k`") |
| HitCache:false  |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
6 rows in set (0.01 sec)
            

在以上AVG示例的SQL基础上添加了having avg_id > 1300,执行计划最上层添加了一个Filter操作符,用于过滤所有满足avg_id > 1300的数据。

有读者可能会问,WHERE中的条件为什么没有对应的Filter操作符呢?在PolarDB-X 1.0优化器的某个阶段,WHERE条件的Filter操作符的确是存在的,只是最终将其下推到了LogiacalView中,因此可以在LogicalViewsql中看到id > 1000

NlJoin

NlJoin,表示NestLoop Join操作符,即使用NestLoop方法进行两表Join。PolarDB-X 1.0中实现了两种JOIN策略:NlJoinBKAJoin,后者表示Batched Key Access Join,批量键值查询,会从左表取一批数据,构建一个IN条件拼接在访问右表的SQL中,从右表一次获取一批数据。

explain select a.* from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000;
+----------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                               |
+----------------------------------------------------------------------------------------------------------------------------+
| Project(id="id", k="k", c="c", pad="pad")                                                                                  |
|   NlJoin(id="id", k="k", c="c", pad="pad", k0="k0", condition="id = k", type="inner")                                      |
|     UnionAll(concurrent=true)                                                                                              |
|       LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` WHERE (`id` > ?)")  |
|     UnionAll(concurrent=true)                                                                                              |
|       LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT `k` FROM `sbtest1` WHERE (`k` > ?)") |
| HitCache:false                                                                                                             |
+----------------------------------------------------------------------------------------------------------------------------+
7 rows in set (0.03 sec)
            

NlJOIN的计划包括三部分内容:

  • 输出列信息:输出的列名,示例中的JOIN会输出5id="id", k="k", c="c", pad="pad", k0="k0"
  • condition:连接条件,示例中连接条件为id = k
  • type:连接类型,示例中是INNER JOIN,因此其连接类型为inner
BKAJoin

BKAJoin(Batched Key Access Join),表示通过批量键值查询的方式进行JOIN,即从左表取一批数据,构建一个IN条件拼接在访问右表的SQL中,从右表一次获取一批数据进行JOIN。

explain select a.* from sbtest1 a, sbtest1 b where a.id = b.k order by a.id;
+-------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                                  |
+-------------------------------------------------------------------------------------------------------------------------------+
| Project(id="id", k="k", c="c", pad="pad")                                                                                     |
|   BKAJoin(id="id", k="k", c="c", pad="pad", id0="id0", k0="k0", c0="c0", pad0="pad0", condition="id = k", type="inner")       |
|     MergeSort(sort="id ASC")                                                                                                  |
|       LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` ORDER BY `id`")        |
|     UnionAll(concurrent=true)                                                                                                 |
|       LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` WHERE (`k` IN ('?'))") |
| HitCache:false                                                                                                                |
+-------------------------------------------------------------------------------------------------------------------------------+
7 rows in set (0.01 sec)
            

BKAJoin的计划内容与NlJoin相同,这两个操作符命名不同,旨在告知执行器以何种方法执行JOIN操作。另外,以上执行计划中右表的LogicalView'k' IN ('?')是优化器构建出来的对右表的IN查询模板。

LogicalModifyView

如上文介绍,LogicalView表示从底层数据源获取数据的操作符,与之对应的,LogicalModifyView表示对底层数据源的修改操作符,其中也会记录一个SQL语句,该SQL可能是INSERT、UPDATE或者DELETE。

explain update sbtest1 set c='Hello, DRDS' where id > 1000;
+--------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                                   |
+--------------------------------------------------------------------------------------------------------------------------------+
| LogicalModifyView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="UPDATE `sbtest1` SET `c` = ? WHERE (`id` > ?)") |
| HitCache:false                                                                                                                 |
+--------------------------------------------------------------------------------------------------------------------------------+
2 rows in set (0.03 sec)

explain delete from sbtest1 where id > 1000;
+-------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                            |
+-------------------------------------------------------------------------------------------------------------------------+
| LogicalModifyView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="DELETE FROM `sbtest1` WHERE (`id` > ?)") |
| HitCache:false                                                                                                          |
+-------------------------------------------------------------------------------------------------------------------------+
2 rows in set (0.03 sec)
            

LogicalModifyView查询计划的内容与LogicalView类似,包括下发的物理分表,分表数以及SQL模板。同样,由于开启了PlanCache,对SQL做了参数化处理,SQL模板中的常量会用?替换。

PhyTableOperation

PhyTableOperation表示对某个物理分表执行一个操作。该操作符目前仅用于INSERT INTO ... VALUES ...。

explain insert into sbtest1 values(1, 1, '1', '1'),(2, 2, '2', '2');
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                                                                                                                 |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| PhyTableOperation(tables="SYSBENCH_CORONADB_1526954857179TGMMSYSBENCH_CORONADB_VGOC_0000_RDS.[sbtest1_001]", sql="INSERT INTO ? (`id`, `k`, `c`, `pad`) VALUES(?, ?, ?, ?)", params="`sbtest1_001`,1,1,1,1") |
| PhyTableOperation(tables="SYSBENCH_CORONADB_1526954857179TGMMSYSBENCH_CORONADB_VGOC_0000_RDS.[sbtest1_002]", sql="INSERT INTO ? (`id`, `k`, `c`, `pad`) VALUES(?, ?, ?, ?)", params="`sbtest1_002`,2,2,2,2") |
|                                                                                                                                                                                                              |
| HitCache:false                                                                                                                                                                                               |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
4 rows in set (0.00 sec)
            

示例中,INSERT插入两行数据,每行数据对应一个PhyTableOperation操作符,PhyTableOperation操作符的内容包括三部分:

  • tables:物理表名,仅有唯一一个物理表名。
  • sql:SQL模板,该SQL模板中表名和常量均被参数化,用?替换,对应的参数在随后的params中给出。
  • params:SQL模板对应的参数,包括表名和常量。

其他信息

HitCache

PolarDB-X 1.0会默认开PlanCache 功能,HitCache用于告知用户当前查询是否命中PlanCache。如下示例,第一次运行HitCachefalse,第二次运行为true。

explain select * From sbtest1 where id > 1000;
+-----------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                          |
+-----------------------------------------------------------------------------------------------------------------------+
| UnionAll(concurrent=true)                                                                                             |
|   LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` WHERE (`id` > ?)") |
| HitCache:false                                                                                                        |
+-----------------------------------------------------------------------------------------------------------------------+
3 rows in set (0.01 sec)

explain select * From sbtest1 where id > 1000;
+-----------------------------------------------------------------------------------------------------------------------+
| LOGICAL PLAN                                                                                                          |
+-----------------------------------------------------------------------------------------------------------------------+
| UnionAll(concurrent=true)                                                                                             |
|   LogicalView(tables="[0000-0031].sbtest1_[000-127]", shardCount=128, sql="SELECT * FROM `sbtest1` WHERE (`id` > ?)") |
| HitCache:true                                                                                                         |
+-----------------------------------------------------------------------------------------------------------------------+
3 rows in set (0.00 sec)