本文为您介绍Hologres使用过程中自助健康检查常用命令。
表规划检查
- 避免Table Group & Shard过多
实例在256Core以下规格,建议只使用默认Table Group;256Core及以上规格实例,可以定义2~3个Table Group。数据库总的Table Group数不建议超过3个。Shard数应大于Worker Node数,小于Core数的60%。如果配置了Replication,Shard数应等比例减小,或等比例增加Worker Node计算资源。检查命令如下。
如果Table Group数量超过3个,建议规划为一个核心Table Group,合并多余Table Group;或者一个主Table Group,以及一个面向维表的小Table Group,通过(Resharding)迁移表至新建Table Group操作。-- 查询当前Table Group个数 select count(distinct tablegroup_name) from hologres.hg_table_group_properties; -- 检查每个TG配置,一个TG不建议超过3000张表(table_num) select tablegroup_name as table_group ,max(property_value) filter( where property_key='shard_count') as shard_count ,max(property_value) filter( where property_key='replica_count') as replica_count ,max(property_value) filter( where property_key='is_default_tg') as is_default ,max(property_value) filter( where property_key='table_num') as table_num from hologres.hg_table_group_properties group by tablegroup_name;
- 检查表数量是否合理
过多的表,引起小文件多,导致元数据占用内存过多,检查表数量命令如下。
如果分区表小且多,建议重新建表,将分区表合并为普通表。-- 检查不同Schema下的内部表数量 select table_namespace as schema ,count(distinct table_name) as total_tables ,count(distinct table_name) filter( where property_key='storage_format') as inner_tables from hologres.hg_table_properties where table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog') group by table_namespace order by table_namespace;
- 检查表统计信息是否更新及时
检查表统计信息命令如下。
如果有统计信息更新不及时的表,且该表有数据更新,请执行-- 检索超过一天没有更新统计信息的表 select schema_name ,table_name ,total_rows ,analyze_timestamp from hologres_statistic.hg_table_statistic where analyze_timestamp < now() - interval '1 days' order by schema_name ,table_name limit 200;
analyze tablename
命令,刷新表的统计信息。 - 避免过多资源组
资源组会限制CPU和内存资源的使用,通常资源组最多设置3个,且保证default资源组分配资源在0.3以上。
检查资源组的命令如下。SELECT * FROM pg_holo_resource_groups where property_key='worker_limit';
表设计检查
- 有限使用行存表
行存表使用场景相对有限,主要用在Flink关联维表场景,因此需要避免误用。列出所有行存表命令如下。
如果误用了行存表,请重新建表,选择列存或者行列共存表。select table_namespace as schema ,table_name as tables from hologres.hg_table_properties where property_key = 'orientation' and property_value = 'row' and table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog');
- Distribution Key应明确设置,且不建议超过2列
建议每个表都至少设置一列做Distribution Key,并且Distribution Key不建议超过2个,检查命令如下。
如果Distribution Key列超过两个,请重新建表,选择一到两个列作为Distribution Key。-- 列出所有Distribution Key超过2列的表 select table_namespace as schema ,table_name as tables ,property_value as distribution_key from hologres.hg_table_properties where property_key = 'distribution_key' and table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog') and array_length(string_to_array(property_value,','),1) > 2; -- 列出所有没有设置Distribution Key的表 select distinct table_namespace as schema ,table_name as tables from hologres.hg_table_properties a where property_key='storage_format' and not exists ( select 1 from hologres.hg_table_properties b where b.property_key = 'distribution_key' and a.table_namespace = b.table_namespace and a.table_name = b.table_name) and table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog' ) order by schema ,tables;
- Dictionary Encoding不建议超过20列
仅对低基数列设置Dictionary Encoding,一般建议不超过20列。如果不确定,请选择
auto encoding
,避免全部列设置Dictionary Encoding。检查命令如下。
如果设置Dictionary Encoding列超过20列,请通过--列出所有dictionary_encoding_columns超过20列,并且没有配置为auto encoding的表 select table_namespace as schema ,table_name as tables ,property_value as dictionary_encoding_columns from hologres.hg_table_properties where property_key = 'dictionary_encoding_columns' and table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog') and array_length(string_to_array(property_value,','),1) > 20 and property_value not like '%:auto';
SET_TABLE_PROPERTY
或者UPDATE_TABLE_PROPERTY
命令更改dictionary_encoding_columns的配置,详情请参见SET_TABLE_PROPERTY或者ALTER TABLE。 - Bitmap Columns不建议超过30列
仅对需要等值比较的列设置Bitmap,一个表建议不超过30列设置Bitmap,过多字符串列设置Bitmap会占用额外存储和内存开销。
如果设置Bitmap列超过30列,请通过-- 列出所有bitmap_columns超过30个列的表 select table_namespace as schema ,table_name as tables ,property_value as bitmap_columns from hologres.hg_table_properties where property_key = 'bitmap_columns' and table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog') and array_length(string_to_array(property_value,','),1) > 30;
SET_TABLE_PROPERTY
或者UPDATE_TABLE_PROPERTY
命令更改bitmap_columns的配置,详情请参见SET_TABLE_PROPERTY或者ALTER TABLE。 - Clustering Key不建议超过2列
Clustering Key具备左匹配原则,因此一般不建议超过两个列,否则适用场景减少。检查命令如下。
如果Clustering Key设置超过两列,请重新建表,选择一到两个排序列作为Clustering Key。-- 列出所有clustering_key超过2个列的表 select table_namespace as schema ,table_name as tables ,property_value as clustering_key from hologres.hg_table_properties where property_key = 'clustering_key' and table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog') and array_length(string_to_array(property_value,','),1) > 2;
- Segment Key最多仅设置一个实时写入时间戳相关列
Segment Key用于文件分块,建议最多只设置一列,且类型为时间戳或者整型。检查命令如下。
如果Segment Key设置超过一列,请重新建表,选择一个时间戳列作为Segment Key。-- 列出所有Segment Key大于一列的表 select table_namespace as schema ,table_name as tables ,property_value as segment_key from hologres.hg_table_properties where property_key = 'segment_key' and table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog') and array_length(string_to_array(property_value,','),1) > 1;
- 数据TTL不建议小于7天
TTL表示一个表数据的回收时间,由于回收是异步进行,不建议TTL小于七天,否则可能会由于回收不及时,造成重复数据。检查命令如下。
如果表的TTL小于七天,请通过-- 列出所有time_to_live_in_seconds小于7天的表 select table_namespace as schema ,table_name as tables ,property_value as time_to_live_in_seconds from hologres.hg_table_properties where property_key = 'time_to_live_in_seconds' and table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog') and property_value::bigint < 604800;
SET_TABLE_PROPERTY
命令更改TTL大于七天,详情请参见SET_TABLE_PROPERTY。 - 按需使用Binlog
Binlog能力强大,但消耗资源也更多,使用Binlog的表写入性能会受到较大影响,行存表Binlog的开销会远小于列存表,因此对于列存表,谨慎开通Binlog能力。检查命令如下。
如果Binlog设置不合适,请通过-- 列出所有配置了Binlog的表 select table_namespace as schema ,table_name as tables from hologres.hg_table_properties where property_key = 'binlog.level' and property_value = 'replica' and table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog') ; -- 列出所有Binlog TTL大于7天的表,建议缩短TTL select table_namespace as schema ,table_name as tables ,property_value as "binlog.ttl" from hologres.hg_table_properties where property_key = 'binlog.ttl' and property_value::bigint > 604800 and table_namespace NOT IN ('hologres','hologres_statistic','pg_catalog') ;
SET_TABLE_PROPERTY
命令调整Binlog级别及TTL时间,详情请参见SET_TABLE_PROPERTY。 - 避免数据倾斜性
数据分布在不同的Shard中,如果部分Shard的数据明显多余其他Shard,说明数据具有显著的倾斜性,此时应该调整Distribution Key的设计,实现更为均衡的数据分布。检查命令如下。
如果数据明显倾斜,需要通过调整Distribution_key重新导入数据。select hg_shard_id ,count(*) from table_name group by hg_shard_id;
运行态检查
- 资源使用检查
CPU、内存、连接数使用情况,通过云监控分析,详情请参见Hologres管控台的监控指标。
- 查询成功率检查
不同类型Query的占比、成功率、延时、并发同比环比分析命令如下。
-- 过去7天各个数据库的DML次数(Select\Insert\Update\Delete) select datname, query_date, count(*) from hologres.query_log where query_date > to_char(current_date - interval'7 days','YYYYMMDD') and command_tag in ('SELECT','INSERT','UPDATE','DELETE') group by datname, query_date order by datname, query_date desc; -- 过去1天各类DML的执行成功情况 select datname, query_date, command_tag, count(*) filter( where status='SUCCESS') as SUCCESS, count(*) filter( where status='FAILED') as FAILED from hologres.query_log where query_date > to_char(current_date - interval'1 days','YYYYMMDD') and command_tag in ('SELECT','INSERT','UPDATE','DELETE') group by datname, query_date, command_tag order by datname, query_date desc; -- 最近2天成功查询的响应延时分析 select datname, query_date, command_tag, count(*), AVG(duration) as duration from hologres.query_log where query_date > to_char(current_date - interval'1 days','YYYYMMDD') and command_tag in ('SELECT','INSERT','UPDATE','DELETE') and status = 'SUCCESS' group by datname, query_date, command_tag order by datname, query_date desc;
- 慢查询检查
过去一天耗时最长的重点慢查询检查命令如下。
-- 查询过去1天耗时最长的重点慢查询 select status as "状态", duration as "耗时(ms)", optimization_cost as "优化耗时(ms)", start_query_cost as "启动耗时(ms)", get_next_cost as "执行耗时(ms)", duration-optimization_cost-start_query_cost-get_next_cost as "其他耗时(ms)", query_id as "QueryID", query from hologres.hg_query_log where query_start > current_date - interval '1 days' and command_tag in ('SELECT') and duration > 1000 order by duration desc, start_query_cost desc, optimization_cost, get_next_cost desc, duration-optimization_cost-start_query_cost-get_next_cost desc limit 200;
消耗资源最多查询的检查命令如下。-- 查询最近一天消耗比较高的Query select status as "状态", duration as "耗时(ms)", query_start as "开始时间", (read_bytes/1048576)::text || ' MB' as "读取量", (memory_bytes/1048576)::text || ' MB' as "内存", (shuffle_bytes/1048576)::text || ' MB' as "Shuffle", (cpu_time_ms/1000)::text || ' s' as "CPU时间", physical_reads as "读盘", query_id as "QueryID", query from hologres.hg_query_log where query_start > current_date - interval'1 days' and command_tag in ('SELECT','INSERT','UPDATE','DELETE') and duration > 1000 order by duration desc, read_bytes desc, shuffle_bytes desc, memory_bytes desc, cpu_time_ms desc, physical_reads desc limit 500;