实验介绍
飞机大战作为一款经典的街机游戏,是很多人的童年回忆。我们的 HaaS EDU K1 开发板专门设计了街机样式的按键排列,很适合我们做这类游戏的开发。
涉及知识点
OLED绘图
按键事件
开发环境准备
硬件
开发用电脑一台
HAAS EDU K1 开发板一块
USB2TypeC 数据线一根
软件
开发环境的搭建请参考《AliOS Things集成开发环境使用说明之搭建开发环境》,其中详细的介绍了AliOS Things 3.3的IDE集成开发环境的搭建流程。
本案例的代码下载请参考《AliOS Things集成开发环境使用说明之创建工程》,
> 选择解决方案:“HaaS EDU K1教育开发案例合集”
> 选择开发板:haaseduk1 board configure
-- 编译固件可参考《AliOS Things集成开发环境使用说明之编译固件》。
-- 烧录固件可参考《AliOS Things集成开发环境使用说明之烧录固件》。
游戏设定
不同于规则简单的贪吃蛇,在飞机大战这类游戏中,往往需要对游戏中出现的每个对象进行数值、行为的设定。在开发游戏前期,梳理好这些设定也有助于我们更清晰地进行开发。有时,优秀的设定也是吸引玩家的重要因素。
角色设定
行为设定
在本游戏中,玩家将控制阿克琉斯级战舰,在持续不断的敌机中通过闪避或攻击开辟出自己的路。
玩家可以通过 HaaS EDU K1 的四个按键控制,阿克琉斯级战舰进行前后左右运动。
在游戏进行过程中,玩家的战舰会不断发射炮弹。被炮弹攻击的敌方战舰会损失响应的装甲。
若玩家战舰被敌方战舰撞击,双方均会损失装甲。
玩家有三次紧急修复战舰的机会。
游戏实现
游戏流程
在开始之前,我们先使用一个简单的流程,帮助大家理解本游戏的刷新机制。这个大循化即游戏刷新所需要的所有流程。
// 游戏中所有对象的更新判定由大循环维护
void aircraftBattle_task()
{
while (1)
{
OLED_Clear(); // 清理屏幕数据
global_update(); // 刷新全局对象,如更新对象的贴图状态,发射子弹,撞击判断等
global_draw(); // 绘制刷新完后的所有对象
OLED_Refresh_GRAM();// 将绘制结果显示在屏幕上
aos_msleep(40); // 40ms 为一个游戏周期
}
}
贴图实现
对于每个对象,我们希望能够将其定位到游戏地图上的每一点,而不是单纯使用贴图函数。因此,每个对象有一个“控制坐标”,而我们相对这个“控制坐标”计算出贴图坐标。这样,如果一个对象需要变换不同尺寸的贴图,我们可以更方便地计算出它的贴图坐标。
如图,红色为该对象的控制坐标,蓝色为该贴图的贴图坐标。
typedef struct
{
map_t *map; // 贴图
int cur_x;
int cur_y; // 飞行物对象的控制坐标
} dfo_t; // 飞行物对象
/*
-> x
____________________
| | icon|
| | of_y |
\/ | | |
y |--of_x--cp |
|__________________|
*/
typedef struct
{
icon_t *icon; // 贴图对象
int offset_x;
int offset_y; // 相对于控制坐标的偏移
} map_t; // 贴图
注意⚠️,在开发过程中,我们使用的是竖屏模式,坐标系是以竖屏做处理。因此,在绘图时,我们需要做坐标系的转换。
void draw_dfo(dfo_t *dfo)
{
map_t *cur_map = get_cur_map(dfo); // 获取当前对象的贴图
// 计算对象边界
int top = dfo->cur_y + cur_map->offset_y;
int bottom = dfo->cur_y + cur_map->offset_y + cur_map->icon->width;
int left = dfo->cur_x + cur_map->offset_x;
int right = dfo->cur_x + cur_map->offset_x + cur_map->icon->height;
// 若对象超出屏幕,则不绘制
if (top > 132 || bottom < 0 || left > 64 || right < 0)
return;
// 绘制坐标转换后的贴图对象
OLED_Icon_Draw(
dfo->cur_y + cur_map->offset_y,
64 - (dfo->cur_x + cur_map->offset_x + cur_map->icon->height),
cur_map->icon,
2);
}
这样,就可以实现在OLED上绘制我们设定的战舰图片了。
移动战舰
接下来,我们要实现的是根据用户的按键输入来移动战舰的贴图。在此之前,我们需要对 dfo_t 结构体进行更多的补充。我们额外定义一个 speed 属性,用于定义在用户每次操作时移动一定的距离。
注意,这里的前后左右均是在游戏坐标系中。
typedef struct
{
// 舰船坐标
int cur_x; // 运动
int cur_y;
// 舰船速度
uint8_t speed; // 绝对固定
// 舰船贴图
map_t *map;
} dfo_t; // Dentified Flying Object
typedef enum
{
UP,
LEFT,
RIGHT,
DOWN
} my_craft_dir_e_t;
void move_MyCraft(dfo_t *my_craft, my_craft_dir_e_t dir)
{
// 获取舰船当前的贴图对象
map_t *cur_map = get_cur_map(my_craft);
// 计算贴图边界
int top = my_craft->cur_y + cur_map->offset_y;
int bottom = my_craft->cur_y + cur_map->offset_y + cur_map->icon->width;
int left = my_craft->cur_x + cur_map->offset_x;
int right = my_craft->cur_x + cur_map->offset_x + cur_map->icon->height;
// 判断方向
switch (dir)
{
case UP:
// 如果这次移动不会超过地图边界,则移动
if (!(top - my_craft->speed < 0))
my_craft->cur_y -= my_craft->speed;
break;
case DOWN:
if (!(bottom + my_craft->speed > 132))
my_craft->cur_y += my_craft->speed;
break;
case LEFT:
if (!(left - my_craft->speed < 0))
my_craft->cur_x -= my_craft->speed;
break;
case RIGHT:
if (!(right + my_craft->speed > 64))
my_craft->cur_x += my_craft->speed;
break;
default:
break;
}
}
将按键回调函数关联至移动舰船函数。注意,这里的前后左右均是在游戏坐标系中。
void aircraftBattle_key_handel(key_code_t key_code)
{
switch (key_code)
{
case EDK_KEY_4:
move_MyCraft(my_craft, LEFT);
break;
case EDK_KEY_1:
move_MyCraft(my_craft, UP);
break;
case EDK_KEY_3:
move_MyCraft(my_craft, DOWN);
break;
case EDK_KEY_2:
move_MyCraft(my_craft, RIGHT);
break;
default:
break;
}
}
加一点特效
作为一个注重细节,精益求精的开发者,我们希望给我们的舰船加上一些特效。而这需要舰船对象不断改变重绘自己的贴图。为了这个功能,我们额外创建了一个新的结构体用于管理“动画”。
typedef struct
{
map_t **act_seq_maps; // 贴图指针数组,该动画的所有贴图(例如爆炸动作包含3帧)
uint8_t act_seq_len; // 贴图指针数组长度
uint8_t act_seq_index; // 用于索引帧
uint8_t act_seq_interval; // 帧间延迟
uint8_t act_seq_interval_cnt; // 用于延迟计数
uint8_t act_is_destory; // 用于标记该动画是否是毁灭动画,若是则不再重复
} act_seq_t;
同时,每个舰船对象新增了一系列属性 act_seq_type, 用于显示当前的贴图状态。例如,当 act_seq_type = 0 时,表示舰船处于正常状态,每隔 act_seq_interval 个周期切换显示一次贴图,即第一行的三帧贴图。当 act_seq_type = 1 时,表示舰船处于爆炸状态,每隔 act_seq_interval 个周期切换显示一次贴图,即第二行的三帧贴图。
目前 act_seq_type 的含义由每个舰船对象自己定义和维护。也可以归纳成统一的枚举量,这一步读者可以自行完成。
typedef struct
{
int cur_x;
int cur_y;
uint8_t speed;
act_seq_t **act_seq_list; // 动画数组包含了多个动作序列
uint8_t act_seq_list_len; // 动画数组长度
uint8_t act_seq_type;
} dfo_t;
// 正常动作序列
act_seq_t *achilles_normal_act = (act_seq_t *)malloc(sizeof(act_seq_t));
achilles_normal_act->act_seq_maps = achilles_normal_maplist;
achilles_normal_act->act_seq_len = 3; // 该动作序列包含3帧图片
achilles_normal_act->act_seq_interval = 10; // 该动画帧间延迟10周期
achilles_normal_act->act_is_destory = 0; // 该动画不是毁灭动画,即一直重复
// 毁灭动作序列
act_seq_t *achilles_destory_act = (act_seq_t *)malloc(sizeof(act_seq_t));
achilles_destory_act->act_seq_maps = achilles_destory_maplist;
achilles_destory_act->act_seq_len = 3;
achilles_destory_act->act_seq_interval = 4; // 该动画帧间延迟4周期
achilles_destory_act->act_is_destory = 1;
// 动作序列数组
act_seq_t **achilles_act_seq_list = (act_seq_t **)malloc(sizeof(act_seq_t *) * achilles->act_seq_list_len);
achilles_act_seq_list[0] = achilles_normal_act;
achilles_act_seq_list[1] = achilles_destory_act;
// 将舰船对象属性指向该动作序列数组
achilles->act_seq_list = achilles_act_seq_list;
achilles->act_seq_type = 0;
定义完成后,我们需要在游戏的每一次循环中,更新战舰状态和贴图。
void craft_update_act(dfo_t *craft)
{
act_seq_t *cur_act_seq = craft->act_seq_list[craft->act_seq_type];
if (cur_act_seq->act_seq_interval == 0)
return; // 若当前战舰无动作序列,则不进行更新
++(cur_act_seq->act_seq_interval_cnt);
if (cur_act_seq->act_seq_interval_cnt >= cur_act_seq->act_seq_interval)
{
cur_act_seq->act_seq_interval_cnt = 0;
++(cur_act_seq->act_seq_index); // 切换贴图
if (cur_act_seq->act_seq_index >= cur_act_seq->act_seq_len)
{
cur_act_seq->act_seq_index = 0;
if (cur_act_seq->act_is_destory == 1)
{
// 在这里处理毁灭的舰船
}
}
}
}
这样,我们就为战舰添加了喷气的特效。
移动敌机
移动敌机的方式更简单。只需要将其向下移动即可。实现方式如下。
void move_enemy(dfo_t *craft)
{
map_t *cur_map = get_cur_map(craft);
craft->cur_y += craft->speed;
int top = craft->cur_y + cur_map->offset_y;
if (top > 132) // 当敌机飞过屏幕下方
reload_dfo(craft, AUTO_RELOAD, AUTO_RELOAD); // 重载敌机
}
重载敌机
在飞机大战中,会有持续不断的敌机生成,并且敌机的出现顺序和位置都随机。为了实现这种效果,我们采用的方式是维护一个敌机数组,当敌机飞过屏幕下方或是被击落后,我们会回收敌机并重新加载,将其重新显示在屏幕上。
void reload_dfo(dfo_t *craft, int pos_x, int pos_y)
{
craft->cur_x = craft->pos_x;
craft->cur_y = craft->pos_y;
if (pos_x == AUTO_RELOAD) // 如果指定重载坐标为自动重载
{
uint16_t height = get_cur_map(craft)->icon->width;
craft->cur_x = random() % (64 - height) + height / 2; // 则随机生成一个坐标,且保证对象显示在地图内
}
if (pos_y == AUTO_RELOAD)
{
uint16_t width = get_cur_map(craft)->icon->height;
craft->cur_y = -(random() % 1000) - width / 2;
}
}
这样,就能够实现源源不断的敌机了。
发射子弹
对于子弹而言,它和战舰的属性非常相似,因此我们在现有的舰船对象 dfo_t 上稍加改动即可。
typedef enum
{
Achilles, // 阿克琉斯级
Venture, // 冲锋者级
Ares, // 阿瑞斯级,战神级
TiTan, // 泰坦级
Bullet, // 子弹
} dfo_model_e_t; // 飞行物型号
typedef struct
{
int offset_x;
int offset_y; // 炮台的相对位置
} arms_t; // 武装结构体
typedef struct
{
dfo_model_e_t model; // 型号
// 运动相关
int start_x; // 飞行物的起始位置,用于计算飞行距离
int start_y;
int cur_x; // 飞行物的当前位置
int cur_y;
uint8_t speed; // 飞行物的运动速度
unsigned int range; // 射程
// 显示相关
act_seq_t **act_seq_list; // 动画数组
uint8_t act_seq_list_len; // 动画数组长度
uint8_t act_seq_type; // 动画状态
// 攻击相关
arms_t **arms_list; // 武器装备数组
uint8_t arms_list_len; // 武器数组长度
} dfo_t;
那么,目前 dfo_t 结构体不仅仅可以用于舰船,也可以用于定义子弹。接下来,我们为舰船定义炮台和子弹。
dfo_t *create_achilles() // 定义阿克琉斯级战舰
{
// 贴图等其他定义
achilles->damage = 8; // 定义撞击伤害
achilles->full_life = 10; // 定义完整装甲值
achilles->cur_life = 10; // 初始化装甲值
achilles->arms_list_len = 2; // 设定炮台数为2
achilles->arms_list = achilles_arms_list; // 定义炮台数组
return achilles;
}
dfo_t *create_bullet()
{
// 贴图等其他定义
bullet->damage = 1; // 定义射击伤害
bullet->full_life = 1; // 定义完整装甲值
bullet->cur_life = 0; // 初始化子弹时,默认不激活
bullet->start_x = -100; // 初始化子弹时,将其移出屏幕外不做处理
bullet->start_y = -100;
bullet->cur_x = -100;
bullet->cur_y = -100;
return bullet;
}
为了生成持续不断的子弹,我们也采用重载的方式去生成子弹。
// 检索未被激活的子弹
dfo_t *get_deactived_bullet()
{
for (int i = 0; i < MAX_BULLET; i++)
{
if (bullet_group[i]->cur_life <= 0)
return bullet_group[i];
}
return NULL;
}
// 触发舰船射击子弹
void shut_craft(dfo_t *craft)
{
if (craft->arms_list == NULL || craft->arms_list_len == 0)
return;
// 从每个炮台重载子弹
for (int i = 0; i < craft->arms_list_len; i++)
{
dfo_t *bullet = get_deactived_bullet();
if (bullet == NULL)
return;
reload_dfo(bullet, craft->cur_x + craft->arms_list[i]->offset_x, craft->cur_y + craft->arms_list[i]->offset_y);
}
}
// 在每一次刷新时移动所有子弹
void move_bullet(dfo_t *bullet)
{
if (bullet->cur_life <= 0)
return;
map_t *cur_map = get_cur_map(bullet);
bullet->cur_y -= bullet->speed;
int bottom = bullet->cur_y + cur_map->offset_y + cur_map->icon->width;
if (bottom < 0 || (bullet->start_y - bullet->cur_y) > bullet->range)
{
bullet->cur_life = 0; // 对超出射程的子弹,取消激活
bullet->cur_x = -100;
}
}
撞击判定
在这一步,我们将会实现对于所有对象的撞击判定,并对对象的属性做出对应的处理。简单而言,撞击判定只需要检查两个对象是否有像素点的重叠即可。
// 判断两个dfo对象 bullet craft 是否发生撞击
int hit_check(dfo_t *bullet, dfo_t *craft)
{
if (craft->cur_y <= 0 || craft->cur_x <= 0)
return 0;
if (craft->cur_life <= 0)
return 0;
if (bullet->cur_life <= 0)
return 0;
act_seq_t *cur_act_seq = bullet->act_seq_list[bullet->act_seq_type];
map_t *cur_map = cur_act_seq->act_seq_maps[cur_act_seq->act_seq_index];
for (int bullet_bit_x = 0; bullet_bit_x < (cur_map->icon->height); bullet_bit_x++)
{
for (int bullet_bit_y = 0; bullet_bit_y < (cur_map->icon->width); bullet_bit_y++)
{
uint8_t bit = (cur_map->icon->p_icon_mask == NULL) ? cur_map->icon->p_icon_data[bullet_bit_x / 8 + bullet_bit_y] & (0x01 << bullet_bit_x % 8) : cur_map->icon->p_icon_mask[bullet_bit_x / 8 + bullet_bit_y] & (0x01 << bullet_bit_x % 8);
if (bit == 0)
continue;
int bit_cur_x = bullet->cur_x + cur_map->offset_x + cur_map->icon->height - bullet_bit_x;
int bit_cur_y = bullet->cur_y + cur_map->offset_y + bullet_bit_y;
act_seq_t *cur_craft_act_seq = craft->act_seq_list[craft->act_seq_type];
map_t *cur_craft_map = cur_craft_act_seq->act_seq_maps[cur_craft_act_seq->act_seq_index];
for (int craft_bit_x = 0; craft_bit_x < (cur_craft_map->icon->height); craft_bit_x++)
{
for (int craft_bit_y = 0; craft_bit_y < (cur_craft_map->icon->width); craft_bit_y++)
{
uint8_t craft_bit = (cur_craft_map->icon->p_icon_mask == NULL) ? cur_craft_map->icon->p_icon_data[craft_bit_x / 8 + craft_bit_y] & (0x01 << craft_bit_x % 8) : cur_craft_map->icon->p_icon_mask[craft_bit_x / 8 + craft_bit_y] & (0x01 << craft_bit_x % 8);
if (craft_bit == 0)
continue;
// 找到有效点对应的绝对坐标
int craft_bit_cur_x = craft->cur_x + cur_craft_map->offset_x + cur_craft_map->icon->height - craft_bit_x;
int craft_bit_cur_y = craft->cur_y + cur_craft_map->offset_y + craft_bit_y;
// 开始遍历所有可撞击对象
if (craft_bit_cur_x == bit_cur_x && craft_bit_cur_y == bit_cur_y)
{
return 1;
}
}
}
}
}
return 0;
}
全局撞击判定,判断地图上所有存活对象的撞击情况。
void global_hit_check(void)
{
// 子弹撞击检测
for (int j = 0; j < MAX_BULLET; j++)
{
dfo_t *bullet = bullet_group[j];
if (bullet->cur_life <= 0)
continue;
for (int i = 0; i < MAX_L_CRAFT + MAX_M_CRAFT + MAX_S_CRAFT; i++)
{
dfo_t *craft = enemy_crafts[i];
if (craft->cur_life <= 0)
continue;
if (hit_check(bullet, craft))
{
craft->cur_life -= bullet->damage;
bullet->cur_life = 0;
bullet->cur_x = -100;
if (craft->cur_life <= 0)
{
destory(craft);
}
continue;
}
}
}
// 我方飞机撞击检测
for (int i = 0; i < MAX_L_CRAFT + MAX_M_CRAFT + MAX_S_CRAFT; i++)
{
dfo_t *craft = enemy_crafts[i];
if (craft->cur_life <= 0)
continue;
if (hit_check(my_craft, craft))
{
craft->cur_life -= my_craft->damage;
my_craft->cur_life -= craft->damage;
// 如果舰船装甲损毁,则摧毁舰船,将其动画状态置为毁灭动画
if (craft->cur_life <= 0)
{
craft->act_seq_type = 1;
craft->cur_life = 0;
}
if (my_craft->cur_life <= 0)
{
my_craft->act_seq_type = 1;
my_craft->cur_life = 0;
g_chance--;
}
continue;
}
}
}
全局刷新
void global_update(void)
{
for (int i = 0; i < MAX_L_CRAFT + MAX_M_CRAFT + MAX_S_CRAFT; i++)
{
craft_update_act(enemy_crafts[i]); // 更新所有敌机贴图状态
move_enemy(enemy_crafts[i]); // 自动移动所有敌机
}
for (int i = 0; i < MAX_BULLET; i++)
{
move_bullet(bullet_group[i]); // 自动移动所有激活的子弹
}
craft_update_act(my_craft); // 更新玩家舰船状态
shut_craft(my_craft); // 触发玩家舰船射击
global_hit_check(); // 全局撞击判定
}
实现效果
接下来请欣赏笔者的操作。
文档内容是否对您有帮助?