DashScope提供了与OpenAI兼容的使用方式。如果您之前使用OpenAI SDK或者其他OpenAI兼容接口(例如langchain_openai SDK),以及HTTP方式调用OpenAI的服务,只需在原有框架下调整API-KEY、base_url、model等参数,就可以直接使用DashScope模型服务。
兼容OpenAI需要信息
Base_URL
base_url表示模型服务的网络访问点或地址。通过该地址,您可以访问服务提供的功能或数据。在Web服务或API的使用中,base_url通常对应于服务的具体操作或资源的URL。当您使用OpenAI兼容接口来使用DashScope模型服务时,需要配置base_url。
当您通过OpenAI SDK或其他OpenAI兼容的SDK调用时,需要配置的base_url如下:
https://dashscope.aliyuncs.com/compatible-mode/v1
当您通过HTTP请求调用时,需要配置的完整访问endpoint如下:
POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions
灵积API-KEY
您需要开通灵积模型服务并获得API-KEY,详情请参考:API-KEY的获取与配置。
支持的模型列表
当前OpenAI兼容接口支持的通义千问系列模型如下表所示。
模型分类 | 模型名称 |
通义千问 | qwen-long qwen-turbo qwen-turo-0624 qwen-turo-0206 qwen-plus qwen-plus-0806 qwen-plus-0723 qwen-plus-0624 qwen-plus-0206 qwen-max qwen-max-0428 qwen-max-0403 qwen-max-0107 |
通义千问VL系列 | qwen-vl-max-0809 qwen-vl-max-0201 qwen-vl-max qwen-vl-plus qwen-vl-v1 qwen-vl-chat-v1 |
通义千问开源系列 | qwen2-math-72b-instruct qwen2-math-7b-instruct qwen2-math-1.5b-instruct qwen2-57b-a14b-instruct qwen2-72b-instruct qwen2-7b-instruct qwen2-1.5b-instruct qwen2-0.5b-instruct qwen1.5-110b-chat qwen1.5-72b-chat qwen1.5-32b-chat qwen1.5-14b-chat qwen1.5-7b-chat qwen1.5-1.8b-chat qwen1.5-0.5b-chat codeqwen1.5-7b-chat qwen-72b-chat qwen-14b-chat qwen-7b-chat qwen-1.8b-longcontext-chat qwen-1.8b-chat |
通过OpenAI SDK调用
前提条件
请确保您的计算机上安装了Python环境。
请安装最新版OpenAI SDK。
# 如果下述命令报错,请将pip替换为pip3 pip install -U openai
已开通灵积模型服务并获得API-KEY:API-KEY的获取与配置。
我们推荐您将API-KEY配置到环境变量中以降低API-KEY的泄露风险,配置方法可参考通过环境变量配置API-KEY。您也可以在代码中配置API-KEY,但是泄露风险会提高。
请选择您需要使用的模型:支持的模型列表。
使用方式
您可以参考以下示例来使用OpenAI SDK访问DashScope服务上的通义千问模型。
非流式调用示例
from openai import OpenAI
import os
def get_response():
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"), # 如果您没有配置环境变量,请在此处用您的API Key进行替换
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", # 填写DashScope服务的base_url
)
completion = client.chat.completions.create(
model="qwen-plus",
messages=[{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': '你是谁?'}]
)
print(completion.model_dump_json())
if __name__ == '__main__':
get_response()
运行代码可以获得以下结果:
{
"id": "chatcmpl-xxx",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"message": {
"content": "我是来自阿里云的超大规模预训练模型,我叫通义千问。",
"role": "assistant",
"function_call": null,
"tool_calls": null
}
}
],
"created": 1716430652,
"model": "qwen-plus",
"object": "chat.completion",
"system_fingerprint": null,
"usage": {
"completion_tokens": 18,
"prompt_tokens": 22,
"total_tokens": 40
}
}
流式调用示例
from openai import OpenAI
import os
def get_response():
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen-plus",
messages=[{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': '你是谁?'}],
stream=True,
# 可选,配置以后会在流式输出的最后一行展示token使用信息
stream_options={"include_usage": True}
)
for chunk in completion:
print(chunk.model_dump_json())
if __name__ == '__main__':
get_response()
运行代码可以获得以下结果:
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":"","function_call":null,"role":"assistant","tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286190,"model":"qwen-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":"我是","function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286190,"model":"qwen-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":"来自","function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286190,"model":"qwen-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":"阿里","function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286190,"model":"qwen-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":"云的大规模语言模型","function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286190,"model":"qwen-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":",我叫通义千问。","function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286190,"model":"qwen-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":"","function_call":null,"role":null,"tool_calls":null},"finish_reason":"stop","index":0,"logprobs":null}],"created":1719286190,"model":"qwen-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[],"created":1719286190,"model":"qwen-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":{"completion_tokens":16,"prompt_tokens":22,"total_tokens":38}}
VL模型流式调用示例(输入图片url)
from openai import OpenAI
import os
def get_response():
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen-vl-plus",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "这是什么"
},
{
"type": "image_url",
"image_url": {
"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"
}
}
]
}
],
top_p=0.8,
stream=True,
stream_options={"include_usage": True}
)
for chunk in completion:
print(chunk.model_dump_json())
if __name__=='__main__':
get_response()
运行代码可以获得以下结果:
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":"","function_call":null,"role":"assistant","tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"这"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"是一"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"张"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"图片,展示了一位"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"女士和一只狗在海滩上互动"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"。她们似乎正在沙滩上玩握手"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"游戏,背景是美丽的日落景色"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"与海洋相连的海岸线。这样的"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"场景通常会让人感觉非常愉快、"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"和谐,并且展现出人与宠物之间的"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":null,"index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[{"delta":{"content":[{"text":"深厚情感联系。"}],"function_call":null,"role":null,"tool_calls":null},"finish_reason":"stop","index":0,"logprobs":null}],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":null}
{"id":"chatcmpl-xxx","choices":[],"created":1719286878,"model":"qwen-vl-plus","object":"chat.completion.chunk","system_fingerprint":null,"usage":{"completion_tokens":61,"prompt_tokens":1276,"total_tokens":1337}}
VL模型流式调用示例(输入图片base64)
VL也支持通过base64编码的图片输入,您可以将图片转换为base64字符串后进行调用。
当前API请求负载限制在6M以下。所以VL模型通过base64格式输入的字符串也不能超过此限制。对应的输入图片原始大小需小于4.5M。
from openai import OpenAI
import os
import base64
import mimetypes
def get_response():
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
image_path = 'path/to/your/image.jpeg'
mime_type, _ = mimetypes.guess_type(image_path)
# 校验MIME类型为支持的图片格式
if mime_type and mime_type.startswith('image'):
with open(image_path, 'rb') as image_file:
# 将图片内容转换为Base64字符串
encoded_image = base64.b64encode(image_file.read())
encoded_image_str = encoded_image.decode('utf-8')
# 创建数据前缀
data_uri_prefix = f'data:{mime_type};base64,'
# 拼接前缀和Base64编码的图像数据
encoded_image_str = data_uri_prefix + encoded_image_str
completion = client.chat.completions.create(
model="qwen-vl-plus",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "这是什么"
},
{
"type": "image_url",
"image_url": {
"url": encoded_image_str
}
}
]
}
],
top_p=0.8,
stream=True,
stream_options={"include_usage": True}
)
for chunk in completion:
print(chunk.model_dump_json())
else:
print("MIME type unsupported or not found.")
if __name__ == "__main__":
get_response()
如果需要非流式输出,将stream相关配置参数去除,并直接打印completion即可。
function call示例
此处以天气查询工具与时间查询工具为例,向您展示通过OpenAI接口兼容实现function call的功能。示例代码可以实现多轮工具调用。
from openai import OpenAI
from datetime import datetime
import json
import os
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"), # 如果您没有配置环境变量,请在此处用您的API Key进行替换
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", # 填写DashScope SDK的base_url
)
# 定义工具列表,模型在选择使用哪个工具时会参考工具的name和description
tools = [
# 工具1 获取当前时刻的时间
{
"type": "function",
"function": {
"name": "get_current_time",
"description": "当你想知道现在的时间时非常有用。",
"parameters": {} # 因为获取当前时间无需输入参数,因此parameters为空字典
}
},
# 工具2 获取指定城市的天气
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "当你想查询指定城市的天气时非常有用。",
"parameters": { # 查询天气时需要提供位置,因此参数设置为location
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "城市或县区,比如北京市、杭州市、余杭区等。"
}
}
},
"required": [
"location"
]
}
}
]
# 模拟天气查询工具。返回结果示例:“北京今天是晴天。”
def get_current_weather(location):
return f"{location}今天是雨天。 "
# 查询当前时间的工具。返回结果示例:“当前时间:2024-04-15 17:15:18。“
def get_current_time():
# 获取当前日期和时间
current_datetime = datetime.now()
# 格式化当前日期和时间
formatted_time = current_datetime.strftime('%Y-%m-%d %H:%M:%S')
# 返回格式化后的当前时间
return f"当前时间:{formatted_time}。"
# 封装模型响应函数
def get_response(messages):
completion = client.chat.completions.create(
model="qwen-max",
messages=messages,
tools=tools
)
return completion.model_dump()
def call_with_messages():
print('\n')
messages = [
{
"content": input('请输入:'), # 提问示例:"现在几点了?" "一个小时后几点" "北京天气如何?"
"role": "user"
}
]
print("-"*60)
# 模型的第一轮调用
i = 1
first_response = get_response(messages)
assistant_output = first_response['choices'][0]['message']
print(f"\n第{i}轮大模型输出信息:{first_response}\n")
if assistant_output['content'] is None:
assistant_output['content'] = ""
messages.append(assistant_output)
# 如果不需要调用工具,则直接返回最终答案
if assistant_output['tool_calls'] == None: # 如果模型判断无需调用工具,则将assistant的回复直接打印出来,无需进行模型的第二轮调用
print(f"无需调用工具,我可以直接回复:{assistant_output['content']}")
return
# 如果需要调用工具,则进行模型的多轮调用,直到模型判断无需调用工具
while assistant_output['tool_calls'] != None:
# 如果判断需要调用查询天气工具,则运行查询天气工具
if assistant_output['tool_calls'][0]['function']['name'] == 'get_current_weather':
tool_info = {"name": "get_current_weather", "role":"tool"}
# 提取位置参数信息
location = json.loads(assistant_output['tool_calls'][0]['function']['arguments'])['properties']['location']
tool_info['content'] = get_current_weather(location)
# 如果判断需要调用查询时间工具,则运行查询时间工具
elif assistant_output['tool_calls'][0]['function']['name'] == 'get_current_time':
tool_info = {"name": "get_current_time", "role":"tool"}
tool_info['content'] = get_current_time()
print(f"工具输出信息:{tool_info['content']}\n")
print("-"*60)
messages.append(tool_info)
assistant_output = get_response(messages)['choices'][0]['message']
if assistant_output['content'] is None:
assistant_output['content'] = ""
messages.append(assistant_output)
i += 1
print(f"第{i}轮大模型输出信息:{assistant_output}\n")
print(f"最终答案:{assistant_output['content']}")
if __name__ == '__main__':
call_with_messages()
当输入:杭州和北京天气怎么样?现在几点了?
时,程序会进行如下输出:
输入参数配置
输入参数与OpenAI的接口参数对齐,当前已支持的参数如下:
参数 | 类型 | 默认值 | 说明 |
model | string | - | 用户使用model参数指明对应的模型,可选的模型请见支持的模型列表。 |
messages | array | - | 用户与模型的对话历史。array中的每个元素形式为 |
| float | - | 生成过程中的核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。 |
temperature(可选) | float | - | 用于控制模型回复的随机性和多样性。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 取值范围: [0, 2),不建议取值为0,无意义。 重要 qwen-vl相关模型目前不支持该参数。 |
presence_penalty (可选) | float | - | 用户控制模型生成时整个序列中的重复度。提高presence_penalty时可以降低模型生成的重复度,取值范围[-2.0, 2.0]。 重要 目前仅在千问商业模型和qwen1.5及以后的开源模型上支持该参数。 |
max_tokens(可选) | integer | - | 指定模型可生成的最大token个数。例如模型最大输出长度为2k,您可以设置为1k,防止模型输出过长的内容。 不同的模型有不同的输出上限。 重要 qwen-vl相关模型目前不支持该参数。 |
seed(可选) | integer | - | 生成时使用的随机数种子,用于控制模型生成内容的随机性。seed支持无符号64位整数。 |
stream(可选) | boolean | False | 用于控制是否使用流式输出。当以stream模式输出结果时,接口返回结果为generator,需要通过迭代获取结果,每次输出为当前生成的增量序列。 |
stop(可选) | string or array | None | stop参数用于实现内容生成过程的精确控制,在模型生成的内容即将包含指定的字符串或token_id时自动停止。stop可以为string类型或array类型。
|
tools(可选) | array | None | 用于指定可供模型调用的工具库,一次function call流程模型会从中选择其中一个工具。tools中每一个tool的结构如下:
在function call流程中,无论是发起function call的轮次,还是向模型提交工具函数的执行结果,均需设置tools参数。当前支持的模型包括qwen-turbo、qwen-plus和qwen-max。 说明 qwen-vl相关模型目前不支持该参数。 |
stream_options(可选) | object | None | 该参数用于配置在流式输出时是否展示使用的token数目。只有当stream为True的时候该参数才会激活生效。若您需要统计流式输出模式下的token数目,可将该参数配置为 |
enable_search (可选,通过extra_body配置) | boolean | False | 用于控制模型在生成文本时是否使用互联网搜索结果进行参考。取值如下:
配置方式为: http调用方式为 重要 qwen-long、qwen-vl相关模型目前不支持该参数。 |
返回参数说明
返回参数 | 数据类型 | 说明 | 备注 |
id | string | 系统生成的标识本次调用的id。 | 无 |
model | string | 本次调用的模型名。 | 无 |
system_fingerprint | string | 模型运行时使用的配置版本,当前暂时不支持,返回为空字符串“”。 | 无 |
choices | array | 模型生成内容的详情。 | 无 |
choices[i].finish_reason | string | 有三种情况:
| |
choices[i].message | object | 模型输出的消息。 | |
choices[i].message.role | string | 模型的角色,固定为assistant。 | |
choices[i].message.content | string | 模型生成的文本。 | |
choices[i].index | integer | 生成的结果序列编号,默认为0。 | |
created | integer | 当前生成结果的时间戳(s)。 | 无 |
usage | object | 计量信息,表示本次请求所消耗的token数据。 | 无 |
usage.prompt_tokens | integer | 用户输入文本转换成token后的长度。 | 您可以参考本地tokenizer统计token数据进行token的估计。 |
usage.completion_tokens | integer | 模型生成回复转换为token后的长度。 | 无 |
usage.total_tokens | integer | usage.prompt_tokens与usage.completion_tokens的总和。 | 无 |
通过langchain_openai SDK调用
前提条件
请确保您的计算机上安装了Python环境。
通过运行以下命令安装langchain_openai SDK。
# 如果下述命令报错,请将pip替换为pip3 pip install -U langchain_openai
已开通灵积模型服务并获得API-KEY:API-KEY的获取与配置。
我们推荐您将API-KEY配置到环境变量中以降低API-KEY的泄露风险,详情可参考通过环境变量配置API-KEY。您也可以在代码中配置API-KEY,但是泄露风险会提高。
请选择您需要使用的模型:支持的模型列表。
使用方式
您可以参考以下示例来通过langchain_openai SDK使用DashScope的千问模型。
非流式输出
非流式输出使用invoke方法实现,请参考以下示例代码:
from langchain_openai import ChatOpenAI
import os
def get_response():
llm = ChatOpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"), # 如果您没有配置环境变量,请在此处用您的API Key进行替换
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", # 填写DashScope base_url
model="qwen-plus"
)
messages = [
{"role":"system","content":"You are a helpful assistant."},
{"role":"user","content":"你是谁?"}
]
response = llm.invoke(messages)
print(response.json(ensure_ascii=False))
if __name__ == "__main__":
get_response()
运行代码,可以得到以下结果:
{
"content": "我是来自阿里云的大规模语言模型,我叫通义千问。",
"additional_kwargs": {},
"response_metadata": {
"token_usage": {
"completion_tokens": 16,
"prompt_tokens": 22,
"total_tokens": 38
},
"model_name": "qwen-plus",
"system_fingerprint": "",
"finish_reason": "stop",
"logprobs": null
},
"type": "ai",
"name": null,
"id": "run-xxx",
"example": false,
"tool_calls": [],
"invalid_tool_calls": []
}
流式输出
流式输出使用stream方法实现,无需在参数中配置stream参数。
from langchain_openai import ChatOpenAI
import os
def get_response():
llm = ChatOpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
model="qwen-plus",
# 通过以下设置,在流式输出的最后一行展示token使用信息
stream_options={"include_usage": True}
)
messages = [
{"role":"system","content":"You are a helpful assistant."},
{"role":"user","content":"你是谁?"},
]
response = llm.stream(messages)
for chunk in response:
print(chunk.json(ensure_ascii=False))
if __name__ == "__main__":
get_response()
运行代码,可以得到以下结果:
{"content": "", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "我是", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "来自", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "阿里", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "云", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "的大规模语言模型", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": ",我叫通", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "义千问。", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "", "additional_kwargs": {}, "response_metadata": {"finish_reason": "stop"}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": {"input_tokens": 22, "output_tokens": 16, "total_tokens": 38}, "tool_call_chunks": []}
VL模型流式调用示例
from langchain_openai import ChatOpenAI
import os
def get_response():
llm = ChatOpenAI(
# 如果您没有配置环境变量,请在此处用您的API Key进行替换
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 填写DashScope base_url
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
model="qwen-plus",
# 通过以下设置,在流式输出的最后一行展示token使用信息
stream_options={"include_usage": True}
)
messages= [
{
"role": "user",
"content": [
{
"type": "text",
"text": "这是什么"
},
{
"type": "image_url",
"image_url": {
"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"
}
}
]
}
]
response = llm.stream(messages)
for chunk in response:
print(chunk.json(ensure_ascii=False))
if __name__ == "__main__":
get_response()
运行以上代码,可得到以下示例结果:
{"content": "", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "这张", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "图片", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "中", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "有一", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "只狗和一个小", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "女孩。狗看起来", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "很友好,可能是", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "宠物,而小女孩", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "似乎在与狗", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "互动或玩耍。", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "这是一幅展示", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "人与动物之间", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "温馨关系的画面。", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "", "additional_kwargs": {}, "response_metadata": {"finish_reason": "stop"}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": {"input_tokens": 23, "output_tokens": 40, "total_tokens": 63}, "tool_call_chunks": []}
关于输入参数的配置,可以参考输入参数配置,相关参数在ChatOpenAI对象中定义。
通过HTTP接口调用
您可以通过HTTP接口来调用DashScope服务,获得与通过HTTP接口调用OpenAI服务相同结构的返回结果。
前提条件
已开通灵积模型服务并获得API-KEY:API-KEY的获取与配置。
我们推荐您将API-KEY配置到环境变量中以降低API-KEY的泄露风险,配置方法可参考通过环境变量配置API-KEY。您也可以在代码中配置API-KEY,但是泄露风险会提高。
提交接口调用
POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions
请求示例
以下示例展示通过CURL
命令来调用API的脚本。
如果您没有配置API-KEY为环境变量,需将$DASHSCOPE_API_KEY更改为您的API-KEY。
非流式输出
curl --location 'https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen-plus",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "你是谁?"
}
]
}'
运行命令可得到以下结果:
{
"choices": [
{
"message": {
"role": "assistant",
"content": "我是来自阿里云的大规模语言模型,我叫通义千问。"
},
"finish_reason": "stop",
"index": 0,
"logprobs": null
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 11,
"completion_tokens": 16,
"total_tokens": 27
},
"created": 1715252778,
"system_fingerprint": "",
"model": "qwen-plus",
"id": "chatcmpl-xxx"
}
流式输出
如果您需要使用流式输出,请在请求体中指定stream参数为true。
curl --location 'https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen-plus",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "你是谁?"
}
],
"stream":true
}'
运行命令可得到以下结果:
data: {"choices":[{"delta":{"content":"","role":"assistant"},"index":0,"logprobs":null,"finish_reason":null}],"object":"chat.completion.chunk","usage":null,"created":1715931028,"system_fingerprint":null,"model":"qwen-plus","id":"chatcmpl-3bb05cf5cd819fbca5f0b8d67a025022"}
data: {"choices":[{"finish_reason":null,"delta":{"content":"我是"},"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1715931028,"system_fingerprint":null,"model":"qwen-plus","id":"chatcmpl-3bb05cf5cd819fbca5f0b8d67a025022"}
data: {"choices":[{"delta":{"content":"来自"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1715931028,"system_fingerprint":null,"model":"qwen-plus","id":"chatcmpl-3bb05cf5cd819fbca5f0b8d67a025022"}
data: {"choices":[{"delta":{"content":"阿里"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1715931028,"system_fingerprint":null,"model":"qwen-plus","id":"chatcmpl-3bb05cf5cd819fbca5f0b8d67a025022"}
data: {"choices":[{"delta":{"content":"云的大规模语言模型"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1715931028,"system_fingerprint":null,"model":"qwen-plus","id":"chatcmpl-3bb05cf5cd819fbca5f0b8d67a025022"}
data: {"choices":[{"delta":{"content":",我叫通义千问。"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1715931028,"system_fingerprint":null,"model":"qwen-plus","id":"chatcmpl-3bb05cf5cd819fbca5f0b8d67a025022"}
data: {"choices":[{"delta":{"content":""},"finish_reason":"stop","index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1715931028,"system_fingerprint":null,"model":"qwen-plus","id":"chatcmpl-3bb05cf5cd819fbca5f0b8d67a025022"}
data: [DONE]
输入参数的详情请参考输入参数配置。
异常响应示例
在访问请求出错的情况下,输出的结果中会通过 code 和 message 指明出错原因。
{
"error": {
"message": "Incorrect API key provided. ",
"type": "invalid_request_error",
"param": null,
"code": "invalid_api_key"
}
}
状态码说明
错误码 | 说明 |
400 - Invalid Request Error | 输入请求错误,细节请参见具体报错信息。 |
401 - Incorrect API key provided | apikey不正确。 |
429 - Rate limit reached for requests | qps、qpm等超限。 |
429 - You exceeded your current quota, please check your plan and billing details | 额度超限或者欠费。 |
500 - The server had an error while processing your request | 服务端错误。 |
503 - The engine is currently overloaded, please try again later | 服务端负载过高,可重试。 |