Qwen3-Coder 模型具有强大的代码能力,可通过 API 将其集成到业务中。
模型与价格
中国大陆(北京)
商业版模型
模型名称 | 版本 | 上下文长度 | 最大输入 | 最大输出 | 输入成本 | 输出成本 | 免费额度 |
(Token数) | (每千Token) | ||||||
qwen3-coder-plus 当前与qwen3-coder-plus-2025-07-22能力相同 | 稳定版 | 1,000,000 | 997,952 | 65,536 | 阶梯计价,请参见表格下方说明。 | 各100万Token 有效期:百炼开通后90天内 | |
qwen3-coder-plus-2025-09-23 | 快照版 | ||||||
qwen3-coder-plus-2025-07-22 | 快照版 | ||||||
qwen3-coder-flash 当前与qwen3-coder-flash-2025-07-28能力相同 | 稳定版 | ||||||
qwen3-coder-flash-2025-07-28 | 快照版 | ||||||
上述模型根据本次请求输入的Token数,采取阶梯计费。
qwen3-coder-plus系列
qwen3-coder-plus、qwen3-coder-plus-2025-09-23和qwen3-coder-plus-2025-07-22价格如下,其中 qwen3-coder-plus 支持上下文缓存,命中隐式缓存的输入文本按单价的 20% 计费,命中显式缓存的输入文本按单价的 10% 计费。
单次请求的输入Token数 | 输入成本(每千Token) | 输出成本(每千Token) |
0<Token≤32K | 0.004元 | 0.016元 |
32K<Token≤128K | 0.006元 | 0.024元 |
128K<Token≤256K | 0.01元 | 0.04元 |
256K<Token≤1M | 0.02元 | 0.2元 |
qwen3-coder-flash系列
qwen3-coder-flash 和 qwen3-coder-flash-2025-07-28 价格如下,其中 qwen3-coder-flash 支持上下文缓存,命中隐式缓存的输入文本按单价的 20% 计费,命中显式缓存的输入文本按单价的 10% 计费。
单次请求的输入Token数 | 输入成本(每千Token) | 输出成本(每千Token) |
0<Token≤32K | 0.001元 | 0.004元 |
32K<Token≤128K | 0.0015元 | 0.006元 |
128K<Token≤256K | 0.0025元 | 0.01元 |
256K<Token≤1M | 0.005元 | 0.025元 |
开源版模型
模型名称 | 上下文长度 | 最大输入 | 最大输出 | 输入成本 | 输出成本 | 免费额度 |
(Token数) | (每千Token) | |||||
qwen3-coder-480b-a35b-instruct | 262,144 | 204,800 | 65,536 | 阶梯计价,请参见表格下方说明。 | 各100万Token 有效期:百炼开通后90天内 | |
qwen3-coder-30b-a3b-instruct | ||||||
qwen3-coder-480b-a35b-instruct 与 qwen3-coder-30b-a3b-instruct 根据本次请求输入的 Token数,采取阶梯计费。
模型名称 | 单次请求的输入 Token 数 | 输入成本(每千Token) | 输出成本(每千Token) |
qwen3-coder-480b-a35b-instruct | 0<Token≤32K | 0.006元 | 0.024元 |
32K<Token≤128K | 0.009元 | 0.036元 | |
128K<Token≤200K | 0.015元 | 0.06元 | |
qwen3-coder-30b-a3b-instruct | 0<Token≤32K | 0.0015元 | 0.006元 |
32K<Token≤128K | 0.00225元 | 0.009元 | |
128K<Token≤200K | 0.00375元 | 0.015元 |
国际(新加坡)
商业版模型
模型名称 | 版本 | 上下文长度 | 最大输入 | 最大输出 | 输入成本 | 输出成本 | 免费额度 |
(Token数) | (每千Token) | ||||||
qwen3-coder-plus 当前与qwen3-coder-plus-2025-07-22能力相同 | 稳定版 | 1,000,000 | 997,952 | 65,536 | 阶梯计价,请参见表格下方说明。 | 无免费额度 | |
qwen3-coder-plus-2025-09-23 | 快照版 | ||||||
qwen3-coder-plus-2025-07-22 | 快照版 | ||||||
qwen3-coder-flash 当前与qwen3-coder-flash-2025-07-28能力相同 | 稳定版 | ||||||
qwen3-coder-flash-2025-07-28 | 快照版 | ||||||
上述模型根据本次请求输入的Token数,采取阶梯计费。
qwen3-coder-plus系列
qwen3-coder-plus、qwen3-coder-plus-2025-09-23 和 qwen3-coder-plus-2025-07-22 价格如下,其中 qwen3-coder-plus 支持上下文缓存,命中隐式缓存的输入文本按单价的 20% 计费,命中显式缓存的输入文本按单价的 10% 计费。
单次请求的输入Token数 | 输入成本(每千Token) | 输出成本(每千Token) |
0<Token≤32K | 0.007339元 | 0.036696元 |
32K<Token≤128K | 0.013211元 | 0.066053元 |
128K<Token≤256K | 0.022018元 | 0.110089元 |
256K<Token≤1M | 0.044035元 | 0.440354元 |
qwen3-coder-flash系列
qwen3-coder-flash 和 qwen3-coder-flash-2025-07-28 价格如下,其中 qwen3-coder-flash 支持上下文缓存,命中隐式缓存的输入文本按单价的 20% 计费,命中显式缓存的输入文本按单价的 10% 计费。
单次请求的输入Token数 | 输入成本(每千Token) | 输出成本(每千Token) |
0<Token≤32K | 0.002202元 | 0.011009元 |
32K<Token≤128K | 0.00367元 | 0.018348元 |
128K<Token≤256K | 0.005871元 | 0.029357元 |
256K<Token≤1M | 0.011743元 | 0.070457元 |
开源版模型
模型名称 | 上下文长度 | 最大输入 | 最大输出 | 输入成本 | 输出成本 | 免费额度 |
(Token数) | (每千Token) | |||||
qwen3-coder-480b-a35b-instruct | 262,144 | 204,800 | 65,536 | 阶梯计价,请参见表格下方说明。 | 无免费额度 | |
qwen3-coder-30b-a3b-instruct | ||||||
qwen3-coder-480b-a35b-instruct 与 qwen3-coder-30b-a3b-instruct 根据本次请求输入的 Token数,采取阶梯计费。
模型名称 | 单次请求的输入 Token 数 | 输入成本(每千Token) | 输出成本(每千Token) |
qwen3-coder-480b-a35b-instruct | 0<Token≤32K | 0.011009元 | 0.055044元 |
32K<Token≤128K | 0.019816元 | 0.09908元 | |
128K<Token≤200K | 0.033027元 | 0.165133元 | |
qwen3-coder-30b-a3b-instruct | 0<Token≤32K | 0.003303元 | 0.016513元 |
32K<Token≤128K | 0.005504元 | 0.027522元 | |
128K<Token≤200K | 0.008807元 | 0.044035元 |
快速开始
您需要已获取API Key并配置API Key到环境变量。如果通过OpenAI SDK或DashScope SDK进行调用,还需要安装SDK。
此处以编写一个寻找质数的Python函数简单场景为例。此外,您也可以通过Qwen Code、 Claude Code、Cline 等开发工具集成 Qwen-Coder 模型。
OpenAI兼容
Python
请求示例
import os
from openai import OpenAI
client = OpenAI(
# 新加坡和北京地域的API Key不同。获取API Key:https://help.aliyun.com/zh/model-studio/get-api-key
# 若没有配置环境变量,请用阿里云百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 以下是北京地域base_url,如果使用新加坡地域的模型,需要将base_url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
# 此处以qwen3-coder-plus为例,可按需更换模型名称。
model="qwen3-coder-plus",
messages=[
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': '请编写一个Python函数 find_prime_numbers,该函数接受一个整数 n 作为参数,并返回一个包含所有小于 n 的质数(素数)的列表。质数是指仅能被1和其自身整除的正整数,如2, 3, 5, 7等。不要输出非代码的内容和Markdown的代码块。'}],
)
print("="*20+"回复内容"+"="*20)
print(completion.choices[0].message.content)
print("="*20+"Token消耗"+"="*20)
print(f"输入 Tokens: {completion.usage.prompt_tokens}")
print(f"输出 Tokens: {completion.usage.completion_tokens}")
print(f"总计 Tokens: {completion.usage.total_tokens}")返回结果
====================回复内容====================
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primes
====================Token消耗====================
输入 Tokens: 96
输出 Tokens: 90
总计 Tokens: 186Node.js
请求示例
import OpenAI from "openai";
const client = new OpenAI(
{
// 新加坡和北京地域的API Key不同。获取API Key:https://help.aliyun.com/zh/model-studio/get-api-key
// 若没有配置环境变量,请用百炼API Key将下行替换为:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
// 以下是北京地域base_url,如果使用新加坡地域的模型,需要将base_url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1"
}
);
async function main() {
const completion = await client.chat.completions.create({
model: "qwen3-coder-plus", //此处以qwen3-coder-plus为例,可按需更换模型名称。
messages: [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "请编写一个Python函数 find_prime_numbers,该函数接受一个整数 n 作为参数,并返回一个包含所有小于 n 的质数(素数)的列表。质数是指仅能被1和其自身整除的正整数,如2, 3, 5, 7等。不要输出非代码的内容和Markdown的代码块。" }
],
});
console.log("=".repeat(20) + "回复内容" + "=".repeat(20));
console.log(completion.choices[0].message.content);
console.log("=".repeat(20) + "Token消耗" + "=".repeat(20));
if (completion.usage) {
console.log(`输入 Tokens: ${completion.usage.prompt_tokens}`);
console.log(`输出 Tokens: ${completion.usage.completion_tokens}`);
console.log(`总计 Tokens: ${completion.usage.total_tokens}`);
}
}
main();返回结果
====================回复内容====================
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primes
====================Token消耗====================
输入 Tokens: 96
输出 Tokens: 90
总计 Tokens: 186curl
请求示例
以下为北京地域url,若使用新加坡地域的模型,需将url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions
curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder-plus",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "请编写一个Python函数 find_prime_numbers,该函数接受一个整数 n 作为参数,并返回一个包含所有小于 n 的质数(素数)的列表。质数是指仅能被1和其自身整除的正整数,如2, 3, 5, 7等。不要输出非代码的内容和Markdown的代码块。"
}
]
}'返回结果
{
"choices": [
{
"message": {
"content": "def find_prime_numbers(n):\n if n <= 2:\n return []\n \n primes = []\n \n for num in range(2, n):\n is_prime = True\n for i in range(2, int(num ** 0.5) + 1):\n if num % i == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(num)\n \n return primes",
"role": "assistant"
},
"finish_reason": "stop",
"index": 0,
"logprobs": null
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 96,
"completion_tokens": 90,
"total_tokens": 186,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"created": 1761615592,
"system_fingerprint": null,
"model": "qwen3-coder-plus",
"id": "chatcmpl-3de690bd-ae7f-461d-8eb6-d65b0577e803"
}DashScope
Python
请求示例
import dashscope
import os
# 若使用新加坡地域的模型,请取消下行注释
# dashscope.base_http_api_url = "https://dashscope-intl.aliyuncs.com/api/v1"
messages = [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "请编写一个Python函数 find_prime_numbers,该函数接受一个整数 n 作为参数,并返回一个包含所有小于 n 的质数(素数)的列表。质数是指仅能被1和其自身整除的正整数,如2, 3, 5, 7等。不要输出非代码的内容和Markdown的代码块。"
}
]
response = dashscope.Generation.call(
# 新加坡和北京地域的API Key不同。获取API Key:https://help.aliyun.com/zh/model-studio/get-api-key
# 若没有配置环境变量,请用阿里云百炼API Key将下行替换为:api_key = "sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
model="qwen3-coder-plus",
messages=messages,
result_format="message"
)
print("=" * 20 + "回复内容" + "=" * 20)
print(response.output.choices[0].message.content)
print("=" * 20 + "Token消耗" + "=" * 20)
print(f"输入 Tokens: {response.usage.input_tokens}")
print(f"输出 Tokens: {response.usage.output_tokens}")
print(f"总计 Tokens: {response.usage.total_tokens}")返回结果
====================回复内容====================
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primes
====================Token消耗====================
输入 Tokens: 96
输出 Tokens: 90
总计 Tokens: 186Java
请求示例
import java.util.Arrays;
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.InputRequiredException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.protocol.Protocol;
public class Main {
public static void callWithMessage()
throws NoApiKeyException, ApiException, InputRequiredException {
String apiKey = System.getenv("DASHSCOPE_API_KEY");
// 以下为北京地域base_url,若使用新加坡地域的模型,需将base_url替换为:https://dashscope-intl.aliyuncs.com/api/v1
Generation gen = new Generation(Protocol.HTTP.getValue(), "https://dashscope.aliyuncs.com/api/v1");
Message sysMsg = Message.builder()
.role(Role.SYSTEM.getValue())
.content("You are a helpful assistant.").build();
Message userMsg = Message.builder()
.role(Role.USER.getValue())
.content("请编写一个Python函数 find_prime_numbers,该函数接受一个整数 n 作为参数,并返回一个包含所有小于 n 的质数(素数)的列表。质数是指仅能被1和其自身整除的正整数,如2, 3, 5, 7等。不要输出非代码的内容和Markdown的代码块。").build();
// 此处以qwen3-coder-plus为例,可按需更换模型名称。
GenerationParam param = GenerationParam.builder()
.apiKey(apiKey)
.model("qwen3-coder-plus")
.messages(Arrays.asList(sysMsg, userMsg))
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.build();
GenerationResult result = gen.call(param);
System.out.println("====================回复内容====================");
System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent());
System.out.println("====================Token消耗====================");
System.out.println("输入 Tokens:" + result.getUsage().getInputTokens());
System.out.println("输出 Tokens:" + result.getUsage().getOutputTokens());
System.out.println("总计 Tokens:" + result.getUsage().getTotalTokens());
}
public static void main(String[] args){
try {
callWithMessage();
} catch (ApiException | NoApiKeyException | InputRequiredException e) {
e.printStackTrace();
}
}
}返回结果
====================回复内容====================
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primes
====================Token消耗====================
输入 Tokens: 96
输出 Tokens: 90
总计 Tokens: 186curl
请求示例
以下为北京地域url,若使用新加坡地域的模型,需将url替换为:https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/text-generation/generation
curl -X POST "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation" \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder-plus",
"input":{
"messages":[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "请编写一个Python函数 find_prime_numbers,该函数接受一个整数 n 作为参数,并返回一个包含所有小于 n 的质数(素数)的列表。质数是指仅能被1和其自身整除的正整数,如2, 3, 5, 7等。不要输出非代码的内容和Markdown的代码块。"
}
]
},
"parameters": {
"result_format": "message"
}
}'返回结果
{
"output": {
"choices": [
{
"message": {
"content": "def find_prime_numbers(n):\n if n <= 2:\n return []\n \n primes = []\n \n for num in range(2, n):\n is_prime = True\n for i in range(2, int(num ** 0.5) + 1):\n if num % i == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(num)\n \n return primes",
"role": "assistant"
},
"finish_reason": "stop"
}
]
},
"usage": {
"total_tokens": 186,
"output_tokens": 90,
"input_tokens": 96,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"request_id": "b1b8d1f8-0d26-4651-a466-66eefa0e7c51"
}进阶用法
流式输出
使用流式输出调用通义千问代码模型,能够实时返回中间结果,减少阅读等待时间,并降低请求的超时风险。
OpenAI兼容
Python
请求示例
import os
from openai import OpenAI
client = OpenAI(
# 新加坡和北京地域的API Key不同。获取API Key:https://help.aliyun.com/zh/model-studio/get-api-key
# 若没有配置环境变量,请用阿里云百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 以下是北京地域base_url,如果使用新加坡地域的模型,需要将base_url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen3-coder-plus",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "请编写一个Python函数 isPalindrome,该函数接受一个字符串 string 作为参数,并检查该字符串是否为回文。回文是指正读和反读都相同的字符串。函数应返回布尔值 True 或 False。不要输出非代码的内容和Markdown的代码块。"}
],
stream=True,
# 在最后一个chunk中获取本次请求的Token用量
stream_options={"include_usage": True}
)
content_parts = []
print("="*20+"回复内容"+"="*20+"\n", end="", flush=True)
for chunk in completion:
# 最后一个chunk不包含choices,但包含usage信息
if chunk.choices:
# delta.content可能为None,使用`or ""`避免拼接时出错
content = chunk.choices[0].delta.content or ""
print(content, end="", flush=True)
content_parts.append(content)
elif chunk.usage:
print("\n"+"="*20+"Token消耗"+"="*20)
print(f"输入 Tokens: {chunk.usage.prompt_tokens}")
print(f"输出 Tokens: {chunk.usage.completion_tokens}")
print(f"总计 Tokens: {chunk.usage.total_tokens}")
full_response = "".join(content_parts)
# 如需获取完整响应字符串,请取消下行注释
# print(f"\n--- 完整回复 ---\n{full_response}")返回结果
====================回复内容====================
def isPalindrome(string):
# 将字符串转换为小写并去除空格
cleaned_string = string.lower().replace(" ", "")
# 检查字符串是否与其反转相等
return cleaned_string == cleaned_string[::-1]
====================Token消耗====================
输入 Tokens: 77
输出 Tokens: 53
总计 Tokens: 130Node.js
请求示例
import OpenAI from "openai";
const client = new OpenAI(
{
// 新加坡和北京地域的API Key不同。获取API Key:https://help.aliyun.com/zh/model-studio/get-api-key
// 若没有配置环境变量,请用百炼API Key将下行替换为:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
// 以下是北京地域base_url,如果使用新加坡地域的模型,需要将base_url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1"
}
);
async function main() {
const stream = await client.chat.completions.create({
model: "qwen3-coder-plus",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "请编写一个Python函数 isPalindrome,该函数接受一个字符串 string 作为参数,并检查该字符串是否为回文。回文是指正读和反读都相同的字符串。函数应返回布尔值 True 或 False。不要输出非代码的内容和Markdown的代码块。" },
],
stream: true,
// 在最后一个chunk中获取本次请求的Token用量
stream_options: { include_usage: true },
});
const contentParts = [];
process.stdout.write("\n"+"=".repeat(20) + "回复内容" + "=".repeat(20) + "\n");
for await (const chunk of stream) {
// 最后一个chunk不包含choices,但包含usage信息
if (chunk.choices && chunk.choices.length > 0) {
const content = chunk.choices[0]?.delta?.content || "";
process.stdout.write(content);
contentParts.push(content);
} else if (chunk.usage) {
// 请求结束,打印Token用量
console.log("\n"+"=".repeat(20) + "Token消耗" + "=".repeat(20));
console.log(`输入 Tokens: ${chunk.usage.prompt_tokens}`);
console.log(`输出 Tokens: ${chunk.usage.completion_tokens}`);
console.log(`总计 Tokens: ${chunk.usage.total_tokens}`);
}
}
const fullResponse = contentParts.join("");
// 如需获取完整响应字符串,请取消下行注释
// console.log(`\n--- 完整回复 ---\n${fullResponse}`);
}
main();返回结果
====================回复内容====================
def isPalindrome(string):
# 将字符串转换为小写并去除空格
cleaned_string = string.lower().replace(" ", "")
# 检查字符串是否与其反转相等
return cleaned_string == cleaned_string[::-1]
====================Token消耗====================
输入 Tokens: 77
输出 Tokens: 53
总计 Tokens: 130curl
请求示例
以下为北京地域url,若使用新加坡地域的模型,需将url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions
curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
--no-buffer \
-d '{
"model": "qwen3-coder-plus",
"messages": [
{"role": "user", "content": "请编写一个Python函数 isPalindrome,该函数接受一个字符串 string 作为参数,并检查该字符串是否为回文。回文是指正读和反读都相同的字符串。函数应返回布尔值 True 或 False。不要输出非代码的内容和Markdown的代码块。"}
],
"stream": true,
"stream_options": {"include_usage": true}
}'返回结果
data: {"choices":[{"delta":{"content":"","role":"assistant"},"index":0,"logprobs":null,"finish_reason":null}],"object":"chat.completion.chunk","usage":null,"created":1761299312,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-1288d5fa-3c9f-443d-9d43-1ddaf4519393"}
data: {"choices":[{"finish_reason":null,"logprobs":null,"delta":{"content":"def"},"index":0}],"object":"chat.completion.chunk","usage":null,"created":1761299312,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-1288d5fa-3c9f-443d-9d43-1ddaf4519393"}
data: {"choices":[{"delta":{"content":" isPalindrome(string"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1761299312,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-1288d5fa-3c9f-443d-9d43-1ddaf4519393"}
......
data: {"choices":[{"delta":{"content":"_string[::-1]"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1761299312,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-1288d5fa-3c9f-443d-9d43-1ddaf4519393"}
data: {"choices":[{"finish_reason":"stop","delta":{"content":""},"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1761299312,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-1288d5fa-3c9f-443d-9d43-1ddaf4519393"}
data: {"choices":[],"object":"chat.completion.chunk","usage":{"prompt_tokens":66,"completion_tokens":53,"total_tokens":119,"prompt_tokens_details":{"cached_tokens":0}},"created":1761299312,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-1288d5fa-3c9f-443d-9d43-1ddaf4519393"}
data: [DONE]DashScope
Python
请求示例
import os
from http import HTTPStatus
import dashscope
from dashscope import Generation
# 若使用新加坡地域的模型,请取消下行注释
# dashscope.base_http_api_url = "https://dashscope-intl.aliyuncs.com/api/v1"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "请编写一个Python函数 isPalindrome,该函数接受一个字符串 string 作为参数,并检查该字符串是否为回文。回文是指正读和反读都相同的字符串。函数应返回布尔值 True 或 False。不要输出非代码的内容和Markdown的代码块。"},
]
responses = Generation.call(
# 新加坡和北京地域的API Key不同。获取API Key:https://help.aliyun.com/zh/model-studio/get-api-key
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model="qwen3-coder-plus",
messages=messages,
result_format="message",
stream=True,
# 增量输出,每个数据块仅包含新生成的内容
incremental_output=True,
)
content_parts = []
print("="*20+"回复内容"+"="*20+"\n", end="", flush=True)
for resp in responses:
if resp.status_code == HTTPStatus.OK:
content = resp.output.choices[0].message.content
print(content, end="", flush=True)
content_parts.append(content)
if resp.output.choices[0].finish_reason == "stop":
print("\n"+"=" * 20 + "Token消耗" + "=" * 20)
print(f"输入 Tokens: {resp.usage.input_tokens}")
print(f"输出 Tokens: {resp.usage.output_tokens}")
print(f"总计 Tokens: {resp.usage.total_tokens}")
full_response = "".join(content_parts)
# 如需获取完整响应字符串,请取消下行注释
# print(f"\n--- 完整回复 ---\n{full_response}")返回结果
====================回复内容====================
def isPalindrome(string):
# 将字符串转换为小写并去除空格
cleaned_string = string.lower().replace(" ", "")
# 检查字符串是否与其反转相等
return cleaned_string == cleaned_string[::-1]
====================Token消耗====================
输入 Tokens: 77
输出 Tokens: 53
总计 Tokens: 130Java
请求示例
// DashScope SDK 版本需要不低于 2.20.6
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import io.reactivex.Flowable;
import io.reactivex.schedulers.Schedulers;
import java.util.Arrays;
import java.util.concurrent.CountDownLatch;
import com.alibaba.dashscope.protocol.Protocol;
public class Main {
public static void main(String[] args) {
String apiKey = System.getenv("DASHSCOPE_API_KEY");
// 以下为北京地域base_url,若使用新加坡地域的模型,需将base_url替换为:https://dashscope-intl.aliyuncs.com/api/v1
Generation gen = new Generation(Protocol.HTTP.getValue(), "https://dashscope.aliyuncs.com/api/v1");
CountDownLatch latch = new CountDownLatch(1);
GenerationParam param = GenerationParam.builder()
.apiKey(apiKey)
.model("qwen3-coder-plus")
.messages(Arrays.asList(
Message.builder()
.role(Role.USER.getValue())
.content("请编写一个Python函数 isPalindrome,该函数接受一个字符串 string 作为参数,并检查该字符串是否为回文。回文是指正读和反读都相同的字符串。函数应返回布尔值 True 或 False。不要输出非代码的内容和Markdown的代码块。")
.build()
))
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.incrementalOutput(true) // 开启增量输出,流式返回,每个数据块仅包含新生成的内容
.build();
try {
Flowable<GenerationResult> result = gen.streamCall(param);
StringBuilder fullContent = new StringBuilder();
System.out.println("====================回复内容====================");
result
.subscribeOn(Schedulers.io()) // IO线程执行请求
.observeOn(Schedulers.computation()) // 计算线程处理响应
.subscribe(
// onNext: 处理每个响应片段
message -> {
String content = message.getOutput().getChoices().get(0).getMessage().getContent();
String finishReason = message.getOutput().getChoices().get(0).getFinishReason();
// 输出内容
System.out.print(content);
fullContent.append(content);
// 当 finishReason 不为 null 时,表示是最后一个 chunk,输出用量信息
if (finishReason != null && !"null".equals(finishReason)) {
System.out.println("\n====================Token消耗====================");
System.out.println("输入 Tokens: " + message.getUsage().getInputTokens());
System.out.println("输出 Tokens: " + message.getUsage().getOutputTokens());
System.out.println("总计 Tokens: " + message.getUsage().getTotalTokens());
}
System.out.flush(); // 立即刷新输出
},
// onError: 处理错误
error -> {
System.err.println("\n请求失败: " + error.getMessage());
latch.countDown();
},
// onComplete: 完成回调
() -> {
System.out.println(); // 换行
// 如需获取完整响应字符串,请取消下行注释
// System.out.println("完整响应: " + fullContent.toString());
latch.countDown();
}
);
// 主线程等待异步任务完成
latch.await();
} catch (Exception e) {
System.err.println("请求异常: " + e.getMessage());
e.printStackTrace();
}
}
}返回结果
====================回复内容====================
def isPalindrome(string):
# 将字符串转换为小写并去除空格
cleaned_string = string.lower().replace(" ", "")
# 检查字符串是否与其反转相等
return cleaned_string == cleaned_string[::-1]
====================Token消耗====================
输入 Tokens: 77
输出 Tokens: 53
总计 Tokens: 130curl
请求示例
以下为北京地域url,若使用新加坡地域的模型,需将url替换为:https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/text-generation/generation
curl -X POST https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-H "X-DashScope-SSE: enable" \
-d '{
"model": "qwen3-coder-plus",
"input":{
"messages":[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "请编写一个Python函数 isPalindrome,该函数接受一个字符串 string 作为参数,并检查该字符串是否为回文。回文是指正读和反读都相同的字符串。函数应返回布尔值 True 或 False。不要输出非代码的内容和Markdown的代码块。"
}
]
},
"parameters": {
"result_format": "message",
"incremental_output":true
}
}'返回结果
id:1
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"def","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":78,"output_tokens":1,"input_tokens":77,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"92057470-782b-4235-bac8-2fd1492231eb"}
id:2
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":" isPalindrome(string","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":81,"output_tokens":4,"input_tokens":77,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"92057470-782b-4235-bac8-2fd1492231eb"}
id:3
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"):\n #","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":84,"output_tokens":7,"input_tokens":77,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"92057470-782b-4235-bac8-2fd1492231eb"}
...
id:17
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":" == cleaned","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":125,"output_tokens":48,"input_tokens":77,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"92057470-782b-4235-bac8-2fd1492231eb"}
id:18
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"_string[::-1]","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":129,"output_tokens":52,"input_tokens":77,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"92057470-782b-4235-bac8-2fd1492231eb"}
id:19
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"","role":"assistant"},"finish_reason":"stop"}]},"usage":{"total_tokens":129,"output_tokens":52,"input_tokens":77,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"92057470-782b-4235-bac8-2fd1492231eb"}工具调用
Qwen3-Coder 模型具有强大的 Coding Agent 能力,能够调用外部工具实现代码修改、文件操作等复杂任务。发起 Function Calling 调用后,模型将在 tool_calls 响应字段中返回工具名称与参数。实现并执行这些工具,即可完成写入文件等实际操作,完整流程请参见:Function Calling。
OpenAI兼容
Python
请求示例
import os
from openai import OpenAI
client = OpenAI(
# 新加坡和北京地域的API Key不同。获取API Key:https://help.aliyun.com/zh/model-studio/get-api-key
# 若没有配置环境变量,请用阿里云百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 以下是北京地域base_url,如果使用新加坡地域的模型,需要将base_url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
tools = [
# 工具1 读取文件内容
{
"type": "function",
"function": {
"name": "read_file",
"description": "读取指定路径的文件内容。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标文件的相对或绝对路径"
}
},
"required": ["path"]
}
}
},
# 工具2 写入文件内容
{
"type": "function",
"function": {
"name": "write_file",
"description": "将内容写入指定文件,若文件不存在则创建。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标文件的相对或绝对路径"
},
"content": {
"type": "string",
"description": "写入文件的字符串内容"
}
},
"required": ["path", "content"]
}
}
},
# 工具3 列出目录内容
{
"type": "function",
"function": {
"name": "list_directory",
"description": "列出指定目录中的文件和子目录。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标目录的相对或绝对路径"
}
},
"required": ["path"]
}
}
}
]
messages = [{"role": "user", "content": "写一个python代码,快速排序,命名为quick_sort.py"}]
completion = client.chat.completions.create(
model="qwen3-coder-plus",
messages=messages,
tools=tools
)
print("="*20+"工具调用信息"+"="*20)
print(completion.choices[0].message.tool_calls)
print("="*20+"Token消耗"+"="*20)
print(f"输入 Tokens: {completion.usage.prompt_tokens}")
print(f"输出 Tokens: {completion.usage.completion_tokens}")
print(f"总计 Tokens: {completion.usage.total_tokens}")返回结果
====================工具调用信息====================
[ChatCompletionMessageFunctionToolCall(id='call_1f3c569a3fb14a84a86b94db', function=Function(arguments='{"content": "def quick_sort(arr):\\\\n if len(arr) <= 1:\\\\n return arr\\\\n pivot = arr[len(arr) // 2]\\\\n left = [x for x in arr if x < pivot]\\\\n middle = [x for x in arr if x == pivot]\\\\n right = [x for x in arr if x > pivot]\\\\n return quick_sort(left) + middle + quick_sort(right)\\\\n\\\\nif __name__ == \\\\\\"__main__\\\\\\":\\\\n example = [3, 6, 8, 10, 1, 2, 1]\\\\n print(\\\\\\"Original list:\\\\\\", example)\\\\n sorted_list = quick_sort(example)\\\\n print(\\\\\\"Sorted list:\\\\\\", sorted_list)", "path": "quick_sort.py"}', name='write_file'), type='function', index=0)]
====================Token消耗====================
输入 Tokens: 494
输出 Tokens: 190
总计 Tokens: 684Node.js
请求示例
import OpenAI from "openai";
const client = new OpenAI(
{
// 新加坡和北京地域的API Key不同。获取API Key:https://help.aliyun.com/zh/model-studio/get-api-key
// 若没有配置环境变量,请用百炼API Key将下行替换为:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
// 以下是北京地域base_url,如果使用新加坡地域的模型,需要将base_url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1"
}
);
const tools = [
// 工具1 读取文件内容
{
"type": "function",
"function": {
"name": "read_file",
"description": "读取指定路径的文件内容。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标文件的相对或绝对路径"
}
},
"required": ["path"]
}
}
},
// 工具2 写入文件内容
{
"type": "function",
"function": {
"name": "write_file",
"description": "将内容写入指定文件,若文件不存在则创建。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标文件的相对或绝对路径"
},
"content": {
"type": "string",
"description": "写入文件的字符串内容"
}
},
"required": ["path", "content"]
}
}
},
// 工具3 列出目录内容
{
"type": "function",
"function": {
"name": "list_directory",
"description": "列出指定目录中的文件和子目录。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标目录的相对或绝对路径"
}
},
"required": ["path"]
}
}
}
];
const messages = [{"role": "user", "content": "写一个python代码,快速排序,命名为quick_sort.py"}];
async function main() {
const completion = await client.chat.completions.create({
model: "qwen3-coder-plus", // 此处以qwen3-coder-plus为例,可按需更换模型名称。
messages: messages,
tools: tools,
});
console.log("=".repeat(20) + "工具调用信息" + "=".repeat(20));
console.log(completion.choices[0].message.tool_calls);
console.log("=".repeat(20) + "Token消耗" + "=".repeat(20));
console.log(`输入 Tokens: ${completion.usage.prompt_tokens}`);
console.log(`输出 Tokens: ${completion.usage.completion_tokens}`);
console.log(`总计 Tokens: ${completion.usage.total_tokens}`);
}
main();返回结果
====================工具调用信息====================
[
{
index: 0,
id: 'call_242eec7c7b524a2d90d2e167',
type: 'function',
function: {
name: 'write_file',
arguments: '{"content": "def quick_sort(arr):\\\\n if len(arr) <= 1:\\\\n return arr\\\\n pivot = arr[len(arr) // 2]\\\\n left = [x for x in arr if x < pivot]\\\\n middle = [x for x in arr if x == pivot]\\\\n right = [x for x in arr if x > pivot]\\\\n return quick_sort(left) + middle + quick_sort(right)\\\\n\\\\nif __name__ == \\\\\\"__main__\\\\\\":\\\\n example_list = [3, 6, 8, 10, 1, 2, 1]\\\\n print(\\\\\\"Original list:\\\\\\", example_list)\\\\n sorted_list = quick_sort(example_list)\\\\n print(\\\\\\"Sorted list:\\\\\\", sorted_list)", "path": "quick_sort.py"}'
}
}
]
====================Token消耗====================
输入 Tokens: 494
输出 Tokens: 193
总计 Tokens: 687curl
请求示例
以下为北京地域url,若使用新加坡地域的模型,需将url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions
curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder-plus",
"messages": [
{
"role": "user",
"content": "写一个python代码,快速排序,命名为quick_sort.py"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "read_file",
"description": "读取指定路径的文件内容。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标文件的相对或绝对路径"
}
},
"required": ["path"]
}
}
},
{
"type": "function",
"function": {
"name": "write_file",
"description": "将内容写入指定文件,若文件不存在则创建。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标文件的相对或绝对路径"
},
"content": {
"type": "string",
"description": "写入文件的字符串内容"
}
},
"required": ["path", "content"]
}
}
},
{
"type": "function",
"function": {
"name": "list_directory",
"description": "列出指定目录中的文件和子目录。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标目录的相对或绝对路径"
}
},
"required": ["path"]
}
}
}
]
}'返回结果
{
"choices": [
{
"message": {
"content": "",
"role": "assistant",
"tool_calls": [
{
"index": 0,
"id": "call_0ca7505bb6e44471a40511e5",
"type": "function",
"function": {
"name": "write_file",
"arguments": "{\"content\": \"def quick_sort(arr):\\\\n if len(arr) <= 1:\\\\n return arr\\\\n pivot = arr[len(arr) // 2]\\\\n left = [x for x in arr if x < pivot]\\\\n middle = [x for x in arr if x == pivot]\\\\n right = [x for x in arr if x > pivot]\\\\n return quick_sort(left) + middle + quick_sort(right)\\\\n\\\\nif __name__ == \\\\\\\"__main__\\\\\\\":\\\\n example_list = [3, 6, 8, 10, 1, 2, 1]\\\\n print(\\\\\\\"Original list:\\\\\\\", example_list)\\\\n sorted_list = quick_sort(example_list)\\\\n print(\\\\\\\"Sorted list:\\\\\\\", sorted_list)\", \"path\": \"quick_sort.py\"}"
}
}
]
},
"finish_reason": "tool_calls",
"index": 0,
"logprobs": null
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 494,
"completion_tokens": 193,
"total_tokens": 687,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"created": 1761620025,
"system_fingerprint": null,
"model": "qwen3-coder-plus",
"id": "chatcmpl-20e96159-beea-451f-b3a4-d13b218112b5"
}DashScope
Python
请求示例
import os
import dashscope
# 若使用新加坡地域的模型,请取消下行注释
# dashscope.base_http_api_url = "https://dashscope-intl.aliyuncs.com/api/v1"
tools = [
# 工具1 读取文件内容
{
"type": "function",
"function": {
"name": "read_file",
"description": "读取指定路径的文件内容。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标文件的相对或绝对路径"
}
},
"required": ["path"]
}
}
},
# 工具2 写入文件内容
{
"type": "function",
"function": {
"name": "write_file",
"description": "将内容写入指定文件,若文件不存在则创建。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标文件的相对或绝对路径"
},
"content": {
"type": "string",
"description": "写入文件的字符串内容"
}
},
"required": ["path", "content"]
}
}
},
# 工具3 列出目录内容
{
"type": "function",
"function": {
"name": "list_directory",
"description": "列出指定目录中的文件和子目录。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标目录的相对或绝对路径"
}
},
"required": ["path"]
}
}
}
]
messages = [{"role": "user", "content": "写一个python代码,快速排序,命名为quick_sort.py"}]
response = dashscope.Generation.call(
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model='qwen3-coder-plus',
messages=messages,
tools=tools,
result_format='message'
)
print("="*20+"工具调用信息"+"="*20)
print(response.output.choices[0].message.tool_calls)
print("="*20+"Token消耗"+"="*20)
print(f"输入 Tokens: {response.usage.input_tokens}")
print(f"输出 Tokens: {response.usage.output_tokens}")
print(f"总计 Tokens: {response.usage.total_tokens}")返回结果
====================工具调用信息====================
[{'index': 0, 'id': 'call_33f8121d277f40589eb6cc90', 'type': 'function', 'function': {'name': 'write_file', 'arguments': '{"content": "def quick_sort(arr):\\\\n if len(arr) <= 1:\\\\n return arr\\\\n pivot = arr[len(arr) // 2]\\\\n left = [x for x in arr if x < pivot]\\\\n middle = [x for x in arr if x == pivot]\\\\n right = [x for x in arr if x > pivot]\\\\n return quick_sort(left) + middle + quick_sort(right)\\\\n\\\\nif __name__ == \\\\\\"__main__\\\\\\":\\\\n example = [3, 6, 8, 10, 1, 2, 1]\\\\n print(\\\\\\"Original list:\\\\\\", example)\\\\n sorted_list = quick_sort(example)\\\\n print(\\\\\\"Sorted list:\\\\\\", sorted_list)", "path": "quick_sort.py"}'}}]
====================Token消耗====================
输入 Tokens: 494
输出 Tokens: 190
总计 Tokens: 684Java
请求示例
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.tools.FunctionDefinition;
import com.alibaba.dashscope.tools.ToolBase;
import com.alibaba.dashscope.tools.ToolFunction;
import com.alibaba.dashscope.utils.JsonUtils;
import com.alibaba.dashscope.protocol.Protocol;
import java.util.Arrays;
import java.util.List;
public class Main {
public static void main(String[] args) {
String apiKey = System.getenv("DASHSCOPE_API_KEY");
// 定义工具参数模式
String readPropertyParams =
"{\"type\":\"object\",\"properties\":{\"path\":{\"type\":\"string\",\"description\":\"目标文件的相对或绝对路径\"}},\"required\":[\"path\"]}";
String writePropertyParams =
"{\"type\":\"object\",\"properties\":{\"path\":{\"type\":\"string\",\"description\":\"目标文件的相对或绝对路径\"},\"content\":{\"type\":\"string\",\"description\":\"写入文件的字符串内容\"}},\"required\":[\"path\",\"content\"]}";
String listDirParams =
"{\"type\":\"object\",\"properties\":{\"path\":{\"type\":\"string\",\"description\":\"目标目录的相对或绝对路径\"}},\"required\":[\"path\"]}";
// 定义工具列表
List<ToolBase> tools = Arrays.asList(
// 工具1: read_file
ToolFunction.builder()
.function(FunctionDefinition.builder()
.name("read_file")
.description("读取指定路径的文件内容。")
.parameters(JsonUtils.parseString(readPropertyParams).getAsJsonObject())
.build())
.build(),
// 工具2: write_file
ToolFunction.builder()
.function(FunctionDefinition.builder()
.name("write_file")
.description("将内容写入指定文件,若文件不存在则创建。")
.parameters(JsonUtils.parseString(writePropertyParams).getAsJsonObject())
.build())
.build(),
// 工具3: list_directory
ToolFunction.builder()
.function(FunctionDefinition.builder()
.name("list_directory")
.description("列出指定目录中的文件和子目录。")
.parameters(JsonUtils.parseString(listDirParams).getAsJsonObject())
.build())
.build()
);
// 以下为北京地域base_url,若使用新加坡地域的模型,需将base_url替换为:https://dashscope-intl.aliyuncs.com/api/v1
Generation gen = new Generation(Protocol.HTTP.getValue(), "https://dashscope.aliyuncs.com/api/v1");
// 构建消息
List<Message> messages = Arrays.asList(
Message.builder()
.role(Role.USER.getValue())
.content("写一个python代码,快速排序,命名为quick_sort.py")
.build()
);
// 构建 GenerationParam 参数
GenerationParam param = GenerationParam.builder()
.apiKey(apiKey)
.model("qwen3-coder-plus")
.messages(messages)
.tools(tools)
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.build();
try {
// 调用模型并获取结果
GenerationResult result = gen.call(param);
// 输出工具调用信息
System.out.println("====================工具调用信息====================");
System.out.println(result.getOutput().getChoices().get(0).getMessage().getToolCalls());
// 输出 Token 消耗情况
System.out.println("====================Token消耗====================");
System.out.println("输入 Tokens:" + result.getUsage().getInputTokens());
System.out.println("输出 Tokens:" + result.getUsage().getOutputTokens());
System.out.println("总 Tokens:" + result.getUsage().getTotalTokens());
} catch (Exception e) {
System.err.println("请求异常: " + e.getMessage());
e.printStackTrace();
}
}
}
返回结果
====================工具调用信息====================
[ToolCallFunction(index=null, id=call_6e8dca9f41b0466a868261fd, type=function, function=ToolCallFunction.CallFunction(name=write_file, arguments={"content": "def quick_sort(arr):\\n if len(arr) <= 1:\\n return arr\\n pivot = arr[len(arr) // 2]\\n left = [x for x in arr if x < pivot]\\n middle = [x for x in arr if x == pivot]\\n right = [x for x in arr if x > pivot]\\n return quick_sort(left) + middle + quick_sort(right)\\n\\nif __name__ == \\\"__main__\\\":\\n example = [3, 6, 8, 10, 1, 2, 1]\\n print(\\\"Original list:\\\", example)\\n sorted_list = quick_sort(example)\\n print(\\\"Sorted list:\\\", sorted_list)", "path": "quick_sort.py"}, output=null))]
====================Token消耗====================
输入 Tokens:494
输出 Tokens:190
总 Tokens:684curl
请求示例
以下为北京地域url,若使用新加坡地域的模型,需将url替换为:https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/text-generation/generation
curl --location "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation" \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header "Content-Type: application/json" \
--data '{
"model": "qwen3-coder-plus",
"input": {
"messages": [{
"role": "user",
"content": "写一个python代码,快速排序,命名为quick_sort.py"
}]
},
"parameters": {
"result_format": "message",
"tools": [
{
"type": "function",
"function": {
"name": "read_file",
"description": "读取指定路径的文件内容。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标文件的相对或绝对路径"
}
},
"required": ["path"]
}
}
},
{
"type": "function",
"function": {
"name": "write_file",
"description": "将内容写入指定文件,若文件不存在则创建。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标文件的相对或绝对路径"
},
"content": {
"type": "string",
"description": "写入文件的字符串内容"
}
},
"required": ["path", "content"]
}
}
},
{
"type": "function",
"function": {
"name": "list_directory",
"description": "列出指定目录中的文件和子目录。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目标目录的相对或绝对路径"
}
},
"required": ["path"]
}
}
}
]
}
}'返回结果
{
"output": {
"choices": [
{
"finish_reason": "tool_calls",
"message": {
"role": "assistant",
"tool_calls": [
{
"function": {
"name": "write_file",
"arguments": "{\"content\": \"def quick_sort(arr):\\\\n if len(arr) <= 1:\\\\n return arr\\\\n pivot = arr[len(arr) // 2]\\\\n left = [x for x in arr if x < pivot]\\\\n middle = [x for x in arr if x == pivot]\\\\n right = [x for x in arr if x > pivot]\\\\n return quick_sort(left) + middle + quick_sort(right)\\\\n\\\\nif __name__ == \\\\\\\"__main__\\\\\\\":\\\\n example_list = [3, 6, 8, 10, 1, 2, 1]\\\\n print(\\\\\\\"Original list:\\\\\\\", example_list)\\\\n sorted_list = quick_sort(example_list)\\\\n print(\\\\\\\"Sorted list:\\\\\\\", sorted_list), \"path\": \"quick_sort.py\"}"
},
"index": 0,
"id": "call_645b149bbd274e8bb3789aae",
"type": "function"
}
],
"content": ""
}
}
]
},
"usage": {
"total_tokens": 684,
"output_tokens": 193,
"input_tokens": 491,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"request_id": "d2386acd-fce3-9d0f-8015-c5f3a8bf9f5c"
}代码补全
代码补全可通过两种方式实现:
Partial Mode 可进行前缀补全,支持所有通义千问代码系列模型。
OpenAI兼容的Completions接口支持前缀补全和基于前后缀的中间补全,当前支持部分模型。仅适用中国(北京)地域的模型,需使用中国(北京)地域的API Key。
Partial Mode
Partial Mode 可基于在 Assistant Message 中提供的前缀内容进行续写,支持所有通义千问代码系列模型,详情请参见前缀续写。
OpenAI兼容
Python
请求示例
import os
from openai import OpenAI
client = OpenAI(
# 新加坡和北京地域的API Key不同。获取API Key:https://help.aliyun.com/zh/model-studio/get-api-key
# 若没有配置环境变量,请用阿里云百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"), # 如果您没有配置环境变量,请在此处用您的API Key进行替换
# 以下是北京地域base_url,如果使用新加坡地域的模型,需要将base_url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen3-coder-plus",
messages=[{
"role": "user",
"content": "请帮我写一个python代码生成100以内的素数。不要输出非代码的内容和Markdown的代码块。"
},
{
"role": "assistant",
"content": "def generate_prime_number",
"partial": True
}]
)
print(completion.choices[0].message.content)
返回结果
(n):
primes = []
for i in range(2, n+1):
is_prime = True
for j in range(2, int(i**0.5)+1):
if i % j == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes
prime_numbers = generate_prime_number(100)
print(prime_numbers)Node.js
请求示例
import OpenAI from "openai";
const client = new OpenAI(
{
// 新加坡和北京地域的API Key不同。获取API Key:https://help.aliyun.com/zh/model-studio/get-api-key
// 若没有配置环境变量,请用百炼API Key将下行替换为:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
// 以下是北京地域base_url,如果使用新加坡地域的模型,需要将base_url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1"
}
);
async function main() {
const completion = await client.chat.completions.create({
model: "qwen3-coder-plus",
messages: [
{ role: "user", content: "请帮我写一个python代码生成100以内的素数。不要输出非代码的内容和Markdown的代码块。" },
{ role: "assistant", content: "def generate_prime_number", partial: true}
],
});
console.log(completion.choices[0].message.content);
}
main();返回结果
(n):
primes = []
for i in range(2, n+1):
is_prime = True
for j in range(2, int(i**0.5)+1):
if i % j == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes
prime_numbers = generate_prime_number(100)
print(prime_numbers)curl
请求示例
以下为北京地域url,若使用新加坡地域的模型,需将url替换为:https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions
curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder-plus",
"messages": [{
"role": "user",
"content": "请帮我写一个python代码生成100以内的素数。不要输出非代码的内容和Markdown的代码块。"
},
{
"role": "assistant",
"content": "def generate_prime_number",
"partial": true
}]
}'返回结果
{
"choices": [
{
"message": {
"content": "(n):\n primes = []\n for num in range(2, n + 1):\n is_prime = True\n for i in range(2, int(num ** 0.5) + 1):\n if num % i == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(num)\n return primes\n\nprime_numbers = generate_prime_number(100)\nprint(prime_numbers)",
"role": "assistant"
},
"finish_reason": "stop",
"index": 0,
"logprobs": null
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 38,
"completion_tokens": 93,
"total_tokens": 131,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"created": 1761634556,
"system_fingerprint": null,
"model": "qwen3-coder-plus",
"id": "chatcmpl-c108050a-bb6d-4423-9d36-f64aa6a32976"
}DashScope
Python
请求示例
from http import HTTPStatus
import dashscope
import os
messages = [{
"role": "user",
"content": "请帮我写一个python代码生成100以内的素数,不要输出非代码的内容和Markdown的代码块。"
},
{
"role": "assistant",
"content": "def generate_prime_number",
"partial": True
}]
response = dashscope.Generation.call(
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model='qwen3-coder-plus',
messages=messages,
result_format='message',
)
if response.status_code == HTTPStatus.OK:
print(response.output.choices[0].message.content)
else:
print('Request id: %s, Status code: %s, error code: %s, error message: %s' % (
response.request_id, response.status_code,
response.code, response.message
))
返回结果
(n):
primes = []
for i in range(2, n+1):
is_prime = True
for j in range(2, int(i**0.5)+1):
if i % j == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes
prime_numbers = generate_prime_number(100)
print(prime_numbers)curl
请求示例
以下为北京地域url,若使用新加坡地域的模型,需将url替换为:https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/text-generation/generation
curl -X POST "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation" \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder-plus",
"input":{
"messages":[{
"role": "user",
"content": "请帮我写一个python代码生成100以内的素数,不要输出非代码的内容和Markdown的代码块。"
},
{
"role": "assistant",
"content": "def generate_prime_number",
"partial": true
}]
},
"parameters": {
"result_format": "message"
}
}'返回结果
{
"output": {
"choices": [
{
"message": {
"content": "(n):\n prime_list = []\n for i in range(2, n+1):\n is_prime = True\n for j in range(2, int(i**0.5)+1):\n if i % j == 0:\n is_prime = False\n break\n if is_prime:\n prime_list.append(i)\n return prime_list\n\nprime_numbers = generate_prime_number(100)\nprint(prime_numbers)`",
"role": "assistant"
},
"finish_reason": "stop"
}
]
},
"usage": {
"total_tokens": 131,
"output_tokens": 92,
"input_tokens": 39,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"request_id": "9917f629-e819-4519-af44-b0e677e94b2c"
}Completions接口
Completions 接口仅适用中国(北京)地域的模型,需使用中国(北京)地域的API Key。
调用Completions接口时需通过特定提示词模板指引模型进行代码补全。当前支持 Qwen-Coder 的部分模型:
qwen2.5-coder-0.5b-instruct、qwen2.5-coder-1.5b-instruct、qwen2.5-coder-3b-instruct、qwen2.5-coder-7b-instruct、qwen2.5-coder-14b-instruct、qwen2.5-coder-32b-instruct、qwen-coder-turbo-0919、qwen-coder-turbo-latest、qwen-coder-turbo
基于前缀补全
提示词模板:
<|fim_prefix|>{prefix_content}<|fim_suffix|><|fim_prefix|>和<|fim_suffix|>为特殊 Token(fim即"Fill-in-the-Middle"),用于指引模型进行文本的补全,无需修改。{prefix_content}需要替换为传入的前缀信息,比如函数的名称、输入参数、使用说明等信息。
import os
from openai import OpenAI
client = OpenAI(
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
api_key=os.getenv("DASHSCOPE_API_KEY")
)
completion = client.completions.create(
model="qwen2.5-coder-32b-instruct",
prompt="<|fim_prefix|>def quick_sort(arr):<|fim_suffix|>",
)
print(completion.choices[0].text)import OpenAI from "openai";
const client = new OpenAI(
{
// 若没有配置环境变量,请用阿里云百炼API Key将下行替换为:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1"
}
);
async function main() {
const completion = await client.completions.create({
model: "qwen2.5-coder-32b-instruct",
prompt: "<|fim_prefix|>def quick_sort(arr):<|fim_suffix|>",
});
console.log(completion.choices[0].text)
}
main();curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen2.5-coder-32b-instruct",
"prompt": "<|fim_prefix|>def quick_sort(arr):<|fim_suffix|>"
}'基于前缀和后缀补全
提示词模板:
<|fim_prefix|>{prefix_content}<|fim_suffix|>{suffix_content}<|fim_middle|><|fim_prefix|>、<|fim_suffix|>和<|fim_middle|>为特殊 Token(fim即"Fill-in-the-Middle"),用于指引模型进行文本的补全,无需修改。{prefix_content}需要替换为传入的前缀信息,比如函数的名称、输入参数、使用说明等信息。{suffix_content}需要替换为传入的后缀信息,比如函数的返回参数等信息。
import os
from openai import OpenAI
client = OpenAI(
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
api_key=os.getenv("DASHSCOPE_API_KEY")
)
prefix_content = """def reverse_words_with_special_chars(s):
'''
反转字符串中的每个单词(保留非字母字符的位置),并保持单词顺序。
示例:
reverse_words_with_special_chars("Hello, world!") -> "olleH, dlrow!"
参数:
s (str): 输入字符串(可能包含标点符号)
返回:
str: 处理后的字符串,单词反转但非字母字符位置不变
'''
"""
suffix_content = "return result"
completion = client.completions.create(
model="qwen2.5-coder-32b-instruct",
prompt=f"<|fim_prefix|>{prefix_content}<|fim_suffix|>{suffix_content}<|fim_middle|>",
)
print(completion.choices[0].text)import OpenAI from 'openai';
const client = new OpenAI({
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1",
apiKey: process.env.DASHSCOPE_API_KEY
});
const prefixContent = `def reverse_words_with_special_chars(s):
'''
反转字符串中的每个单词(保留非字母字符的位置),并保持单词顺序。
示例:
reverse_words_with_special_chars("Hello, world!") -> "olleH, dlrow!"
参数:
s (str): 输入字符串(可能包含标点符号)
返回:
str: 处理后的字符串,单词反转但非字母字符位置不变
'''
`;
const suffixContent = "return result";
async function main() {
const completion = await client.completions.create({
model: "qwen2.5-coder-32b-instruct",
prompt: `<|fim_prefix|>${prefixContent}<|fim_suffix|>${suffixContent}<|fim_middle|>`
});
console.log(completion.choices[0].text);
}
main();curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen2.5-coder-32b-instruct",
"prompt": "<|fim_prefix|>def reverse_words_with_special_chars(s):\n\"\"\"\n反转字符串中的每个单词(保留非字母字符的位置),并保持单词顺序。\n 示例:\n reverse_words_with_special_chars(\"Hello, world!\") -> \"olleH, dlrow!\"\n 参数:\n s (str): 输入字符串(可能包含标点符号)\n 返回:\n str: 处理后的字符串,单词反转但非字母字符位置不变\n\"\"\"\n<|fim_suffix|>return result<|fim_middle|>"
}'应用于生产环境
为优化通义千问代码模型的使用效率并降低成本,可参考以下建议:
启用流式输出: 设置
stream=True可以实时返回中间结果,提升用户体验。降低温度参数: 对于代码生成任务,建议将
temperature参数 (用于控制生成文本的随机性)设置在0.1-0.3之间,以提高代码的准确性和确定性。使用支持上下文缓存的模型: 对于包含大量重复前缀(如原始代码)的请求,推荐使用支持上下文缓存的模型(如 qwen3-coder-plus 和 qwen3-coder-flash),以有效降低开销。
控制工具数量:为确保模型调用的效率和成本效益,建议单次传入的工具
tools数量不超过20个。传入大量工具描述会消耗过多输入Token,这不仅会增加费用、降低响应速度,还会加大模型选择正确工具的难度,详情可参见Function Calling。
错误码
如果模型调用失败并返回报错信息,请参见错误信息进行解决。
API参考
关于通义千问代码模型的输入与输出参数,请参见通义千问 API 参考。
常见问题
Q:使用Qwen Code、Claude Code等开发工具时,为什么会消耗大量 Token?
A:通过外部开发工具调用 Qwen-Coder 模型处理问题时,该工具可能会多次调用 API,从而消耗大量 Token。关于具体的监控和减少Token消耗的方法,请参考Qwen Code和Claude Code文档。
Q:如何让模型只输出代码,不包含任何解释性文字?
A:可以参考以下方法:
提示词约束: 在提示词中明确指示,例如:“只返回代码,不要包含任何解释、注释或 markdown 标记。”
设置
stop序列: 使用stop=["\n# 解释:", "说明", "Explanation:", "Note:"]等词组,在模型开始生成解释性文字时提前终止,详情请参见通义千问 API 参考。
Q:如何使用 qwen3-coder-plus 的每日 2000 次免费额度?
A:此额度需要通过 Qwen Code 工具使用,与通用的新人免费额度独立计算,不互相冲突。详情请参见如何使用每天 2000 次的免费额度?