在LangChain中使用百炼

本文主要介绍如何将阿里云百炼提供的模型集成到大模型应用开发框架LangChain中。

前提条件

聊天模型(Chat Model)

Python

OpenAI

只支持百炼的部分模型。完整列表请参考:OpenAI 兼容模式支持的模型列表。调用费用、输入输出上限等请参考:模型总览

使用前需要安装以下依赖:

pip install langchain_openai

模型调用:

from langchain_openai import ChatOpenAI
import os

chatLLM = ChatOpenAI(
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
    model="qwen-plus",  # 此处以qwen-plus为例,您可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
    # other params...
)
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "你是谁?"}]
response = chatLLM.invoke(messages)
print(response.json())

工具调用等进阶技巧请前往 LangChain 官方的 ChatOpenAI。完整的 API参考文档请前往 LangChain 官方的 ChatOpenAI API Reference

DashScope

支持百炼所有的文本生成模型,完整列表与调用费用请参考:模型总览。(也支持部署后的模型)

使用前需要安装以下依赖:

pip install langchain-community
pip install dashscope

模型调用:

from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage

chatLLM = ChatTongyi(
    model="qwen-max",   # 此处以qwen-max为例,您可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
    streaming=True,
    # other params...
)
res = chatLLM.stream([HumanMessage(content="hi")], streaming=True)
for r in res:
    print("chat resp:", r.content)

多模态调用、工具调用等进阶技巧请前往 LangChain 官方的 ChatTongyi。完整的 API参考文档请前往 LangChain 官方的 ChatTongyi API Reference

JavaScript

OpenAI

只支持百炼的部分模型。完整列表请参考:OpenAI 兼容模式支持的模型列表。调用费用、输入输出上限等请参考:模型总览

使用前需要安装以下依赖:

npm install @langchain/openai @langchain/core

模型调用:

import { ChatOpenAI } from "@langchain/openai";

const llm = new ChatOpenAI({
  // 此处以qwen-plus为例,您可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
  model: "qwen-plus",
  apiKey: process.env.DASHSCOPE_API_KEY,
  configuration: {
    baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1",
    // other params...
  },
  // other params...
});

const aiMsg = await llm.invoke([
  {
    role: "system",
    content:
      "You are a helpful assistant that translates English to French. Translate the user sentence.",
  },
  {
    role: "user",
    content: "I love programming.",
  },
]);
console.log('---------------------------');
console.log(aiMsg.content);

工具调用等进阶技巧请前往 LangChain 官方的 ChatOpenAI。完整的 API参考文档请前往 LangChain 官方的 ChatOpenAI API Reference

DashScope

支持百炼所有的文本生成模型,完整列表与调用费用请参考:模型总览。(也支持部署后的模型)

使用前需要安装以下依赖:

npm install @langchain/community @langchain/core

模型调用:

import { ChatAlibabaTongyi } from "@langchain/community/chat_models/alibaba_tongyi";
import { HumanMessage } from "@langchain/core/messages";

// Default model is qwen-turbo
const qwenTurbo = new ChatAlibabaTongyi({
  alibabaApiKey: process.env.DASHSCOPE_API_KEY,
  // other params...
});

// Use qwen-plus
const qwenPlus = new ChatAlibabaTongyi({
// 此处以qwen-plus为例,您可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
  model: "qwen-plus",
  temperature: 1,
  alibabaApiKey: process.env.DASHSCOPE_API_KEY,
  // other params...
});

const messages = [new HumanMessage("Hello")];

const res = await qwenTurbo.invoke(messages);

const res2 = await qwenPlus.invoke(messages);

console.log('---------------------------');
console.log(res.content);
console.log('---------------------------');
console.log(res2.content);

多模态调用、工具调用等进阶技巧请前往 LangChain 官方的 ChatTongyi。完整的 API参考文档请前往 LangChain 官方的 ChatTongyi API Reference

Java

OpenAI

只支持百炼的部分模型。完整列表请参考:OpenAI 兼容模式支持的模型列表。调用费用、输入输出上限等请参考:模型总览

借助LangChain4j开源库,您可以使用Java编码以实现相关功能。有Plain Java(纯Java)和Spring Boot这两种实现方式,更多的接口细节和代码示例,请参见LangChain4j OpenAI官网

Plain Java

  1. 添加依赖

    Maven为例,在pom.xml中添加如下依赖:

    <!-- https://mvnrepository.com/artifact/dev.langchain4j/langchain4j-open-ai -->
    <dependency>
        <groupId>dev.langchain4j</groupId>
        <artifactId>langchain4j-open-ai</artifactId>
        <version>1.0.0-beta3</version>
    </dependency>
  2. 编写代码,调用模型

    import dev.langchain4j.data.message.SystemMessage;
    import dev.langchain4j.data.message.UserMessage;
    import dev.langchain4j.model.chat.ChatLanguageModel;
    import dev.langchain4j.model.openai.OpenAiChatModel;
    
    public class LangChainOpenAITest {
        public static void main(String[] args) {
            ChatLanguageModel model = OpenAiChatModel.builder()
                    .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                    .baseUrl("https://dashscope.aliyuncs.com/compatible-mode/v1")
                    .modelName("qwen-max")
                    .build();
    
            SystemMessage systemMessage = SystemMessage.from("你是心理专家");
            UserMessage userMessage = UserMessage.from("你好");
    
            System.out.println(model.chat(systemMessage, userMessage).aiMessage().text());
        }
    }

Spring Boot

  1. 添加依赖

    Maven为例,在pom.xml中添加如下依赖:

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
    
        <!-- https://mvnrepository.com/artifact/dev.langchain4j/langchain4j-open-ai-spring-boot-starter -->
        <dependency>
            <groupId>dev.langchain4j</groupId>
    	<artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>
    	<version>1.0.0-beta3</version>
        </dependency>
    </dependencies>
  2. 配置模型信息

    application.properties中配置模型、端口号等信息:

    langchain4j.open-ai.chat-model.api-key=${DASHSCOPE_API_KEY}
    langchain4j.open-ai.chat-model.model-name=qwen-max
    langchain4j.open-ai.chat-model.base-url=https://dashscope.aliyuncs.com/compatible-mode/v1
    
    server.port=9000
  3. 编写代码,调用模型

    import dev.langchain4j.model.chat.ChatLanguageModel;
    import org.springframework.web.bind.annotation.GetMapping;
    import org.springframework.web.bind.annotation.RequestParam;
    import org.springframework.web.bind.annotation.RestController;
    
    @RestController
    public class ChatLanguageModelController {
        ChatLanguageModel chatLanguageModel;
    
        ChatLanguageModelController(ChatLanguageModel chatLanguageModel) {
            this.chatLanguageModel = chatLanguageModel;
        }
    
        @GetMapping("/chat")
        public String chat(@RequestParam(value = "message", defaultValue = "你好") String message) {
            return chatLanguageModel.chat(message);
        }
    }

DashScope

支持百炼所有的文本生成模型,完整列表与调用费用请参考:模型总览。(也支持部署后的模型)

借助LangChain4j开源库,您可以使用Java编码以实现相关功能。有Plain Java(纯Java)和Spring Boot这两种实现方式,更多的接口细节和代码示例,请参见LangChain4j DashScope官网

Plain Java

  1. 添加依赖

    Maven为例,在pom.xml中添加如下依赖:

    <!-- https://mvnrepository.com/artifact/dev.langchain4j/langchain4j-community-dashscope -->
    <dependency>
        <groupId>dev.langchain4j</groupId>
        <artifactId>langchain4j-community-dashscope</artifactId>
        <version>1.0.0-beta3</version>
    </dependency>
  2. 编写代码,调用模型

    import dev.langchain4j.community.model.dashscope.QwenChatModel;
    import dev.langchain4j.community.model.dashscope.QwenStreamingChatModel;
    import dev.langchain4j.data.message.ChatMessage;
    import dev.langchain4j.data.message.SystemMessage;
    import dev.langchain4j.data.message.UserMessage;
    import dev.langchain4j.model.chat.ChatLanguageModel;
    import dev.langchain4j.model.chat.StreamingChatLanguageModel;
    import dev.langchain4j.model.chat.request.ChatRequest;
    import dev.langchain4j.model.chat.response.ChatResponse;
    import dev.langchain4j.model.chat.response.StreamingChatResponseHandler;
    
    public class LangChainDashScopeTest {
        public static void main(String[] args) {
            chatLanguageModelTest();
    //        streamingChatLanguageModelTest();
        }
    
        public static void chatLanguageModelTest() {
            ChatLanguageModel qwenModel = QwenChatModel.builder()
                    .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                    .modelName("qwen-max")
                    .build();
    //        System.out.println(qwenModel.chat("你好"));
            ChatRequest request = ChatRequest.builder().messages(new ChatMessage[]{SystemMessage.from("你是心理专家"), UserMessage.from("你好")}).build();
            System.out.println(qwenModel.chat(request).aiMessage().text());
        }
    
        public static void streamingChatLanguageModelTest() {
            StreamingChatLanguageModel model = QwenStreamingChatModel.builder()
                    .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                    .modelName("qwen-max")
                    .build();
            model.chat("你好", new StreamingChatResponseHandler() {
                @Override
                public void onPartialResponse(String s) {
                    System.out.println(s);
                }
    
                @Override
                public void onCompleteResponse(ChatResponse chatResponse) {
                    System.out.println("对话结束");
                    System.exit(0);
                }
    
                @Override
                public void onError(Throwable throwable) {
                    System.out.println("出现异常");
                    System.exit(0);
                }
            });
        }
    }

Spring Boot

  1. 添加依赖

    Maven为例,在pom.xml中添加如下依赖:

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
    
        <!-- https://mvnrepository.com/artifact/dev.langchain4j/langchain4j-community-dashscope-spring-boot-starter -->
        <dependency>
            <groupId>dev.langchain4j</groupId>
    	<artifactId>langchain4j-community-dashscope-spring-boot-starter</artifactId>
    	<version>1.0.0-beta3</version>
        </dependency>
    </dependencies>
  2. 配置模型信息

    application.properties中配置端口号等信息:

    server.port=9000
  3. 编写代码,调用模型

    import dev.langchain4j.community.model.dashscope.QwenChatModel;
    import org.springframework.web.bind.annotation.GetMapping;
    import org.springframework.web.bind.annotation.RequestParam;
    import org.springframework.web.bind.annotation.RestController;
    
    @RestController
    public class QwenChatModelController {
        QwenChatModel qwenChatModel;
    
        QwenChatModelController() {
            qwenChatModel = QwenChatModel.builder()
                    .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                    .modelName("qwen-max")
                    .build();
        }
    
        @GetMapping("/chat")
        public String chat(@RequestParam(value = "message", defaultValue = "你好") String message) {
            return qwenChatModel.chat(message);
        }
    }

文本嵌入模型(Embedding Model)

支持的模型:

MTEB、CMTEB 是 Embedding 模型的通用评估指标,数值越大,模型效果越好。text-embedding-v3 模型当前无法通过 LangChain 框架接口指定向量维度,默认采用 1024 维度作为输出向量维度值。

模型

MTEB

MTEB(Retrieval task)

CMTEB

CMTEB (Retrieval task)

text-embedding-v1

58.30

45.47

59.84

56.59

text-embedding-v2

60.13

49.49

62.17

62.78

text-embedding-v3(1024维度)

63.39

55.41

68.92

73.23

Python

DashScope

使用前需要安装以下依赖:

pip install langchain-community
pip install dashscope

模型调用:

from langchain_community.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(
    model="text-embedding-v2",
    # other params...
)

text = "This is a test document."

query_result = embeddings.embed_query(text)
print("文本向量长度:", len(query_result), sep='')

doc_results = embeddings.embed_documents(
    [
        "Hi there!",
        "Oh, hello!",
        "What's your name?",
        "My friends call me World",
        "Hello World!"
    ])
print("文本向量数量:", len(doc_results), ",文本向量长度:", len(doc_results[0]), sep='')

详细介绍与更多使用方式请前往 LangChain 官方的 DashScope Embeddings。完整的 API参考文档请前往 LangChain 官方的 Embedding API Reference

JavaScript

DashScope

使用前需要安装以下依赖:

npm install @langchain/community @langchain/core

模型调用:

import { AlibabaTongyiEmbeddings } from "@langchain/community/embeddings/alibaba_tongyi";

const model = new AlibabaTongyiEmbeddings({ 
  apiKey: process.env.DASHSCOPE_API_KEY,
  modelName: "text-embedding-v2",
  // other params...
  });
const res = await model.embedQuery(
  "What would be a good company name a company that makes colorful socks?",
);
console.log('---------------------------');
console.log({ res });

详细介绍与更多使用方式请前往 LangChain 官方的 DashScope Embeddings。完整的 API参考文档请前往 LangChain 官方的 Embedding API Reference

Java

DashScope

借助LangChain4j开源库,您可以使用Java编码以实现相关功能。更多的接口细节和代码示例,请参见LangChain4j DashScope官网

  1. 添加依赖

    Maven为例,在pom.xml中添加如下依赖:

    <!-- https://mvnrepository.com/artifact/dev.langchain4j/langchain4j-community-dashscope -->
    <dependency>
        <groupId>dev.langchain4j</groupId>
        <artifactId>langchain4j-community-dashscope</artifactId>
        <version>1.0.0-beta3</version>
    </dependency>
  2. 编写代码,调用模型

    import dev.langchain4j.community.model.dashscope.QwenEmbeddingModel;
    import dev.langchain4j.data.embedding.Embedding;
    
    import java.util.List;
    
    import static dev.langchain4j.data.segment.TextSegment.textSegment;
    import static java.util.Arrays.asList;
    
    public class LangChainEmbeddingsTest {
        public static void main(String[] args) {
            QwenEmbeddingModel model = QwenEmbeddingModel.builder()
                    .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                    .modelName("text-embedding-v2")
                    .build();
    
            List<Embedding> embeddings = model.embedAll(asList(textSegment("hello"), textSegment("how are you?")))
                    .content();
            System.out.println(embeddings.size());
        }
    }

重排序模型(Reranker Model)

支持的模型:

MTEB、CMTEB 也是 Rerank 模型的通用评估指标,数值越大,模型效果越好。

模型

CMTEB(中文)

MTEB(英文)

gte-rerank

68.38

67.62

Python

DashScope

使用前需要安装以下依赖:

pip install langchain-community
pip install dashscope

模型调用:

from langchain_community.document_compressors.dashscope_rerank import DashScopeRerank

sequence = ["text1", "text2", "text3"]

reranker = DashScopeRerank(
    model="gte-rerank",
    # other params...
)
print(reranker.rerank(documents=sequence, query="文本3", top_n=2))

详细介绍与更多使用方式请前往 LangChain 官方的 DashScope Rerank。完整的 API参考文档请前往 LangChain 官方的 Rerank API Reference