大模型无法直接获取网页数据。网页抓取工具可以访问指定 URL 并提取内容,为大模型提供所需信息。
使用方式
网页抓取功能支持三种调用方式,启用参数有所不同:
OpenAI 兼容-Responses API
需要通过 tools 参数启用网页抓取功能,并:
同时添加
web_search(联网搜索) 和web_extractor(网页抓取) 工具;启用
enable_thinking参数开启思考模式。
为获得最佳回复效果,建议同时开启 code_interpreter 工具。# 导入依赖与创建客户端...
response = client.responses.create(
model="qwen3-max-2026-01-23",
input="请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容",
tools=[
# 开启网页抓取必须同时开启联网搜索工具
{"type": "web_search"},
{"type": "web_extractor"},
{"type": "code_interpreter"}
],
extra_body={
# 必须开启思考模式
"enable_thinking": True
}
)
print(response.output_text)OpenAI 兼容-Chat Completions API
通过 enable_search 参数启用联网搜索,并将 search_strategy 设置为 agent_max 以启用网页抓取功能。同时需要启用 enable_thinking 参数开启思考模式。
不支持非流式输出。
# 导入依赖与创建客户端...
completion = client.chat.completions.create(
model="qwen3-max-2026-01-23",
messages=[{"role": "user", "content": "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容"}],
extra_body={
"enable_thinking": True,
"enable_search": True,
"search_options": {"search_strategy": "agent_max"}
},
stream=True
)DashScope
通过 enable_search 参数启用联网搜索,并将 search_strategy 设置为 agent_max 以启用网页抓取功能。同时需要启用 enable_thinking 参数开启思考模式。
不支持非流式输出。
from dashscope import Generation
response = Generation.call(
model="qwen3-max-2026-01-23",
messages=[{"role": "user", "content": "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容"}],
enable_search=True,
search_options={"search_strategy": "agent_max"},
enable_thinking=True,
result_format="message",
stream=True,
incremental_output=True
)支持的模型
支持思考模式下的qwen3-max-2026-01-23。若使用 Responses API,仅支持中国内地地域。
快速开始
运行以下代码,通过 Responses API 调用网页抓取工具,自动总结一篇技术文档。
需要已获取API Key并配置API Key到环境变量。
import os
from openai import OpenAI
client = OpenAI(
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx"(不建议),
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/api/v2/apps/protocols/compatible-mode/v1"
)
response = client.responses.create(
model="qwen3-max-2026-01-23",
input="请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容",
tools=[
{
"type": "web_search"
},
{
"type": "web_extractor"
},
{
"type": "code_interpreter"
}
],
extra_body = {
"enable_thinking": True
}
)
# 取消以下注释查看中间过程输出
# print(response.output)
print("="*20+"回复内容"+"="*20)
print(response.output_text)
# 打印工具调用次数
usage = response.usage
print("="*20+"工具调用次数"+"="*20)
if hasattr(usage, 'x_tools') and usage.x_tools:
print(f"\n网页抓取运行次数: {usage.x_tools.get('web_extractor', {}).get('count', 0)}")import OpenAI from "openai";
import process from 'process';
const openai = new OpenAI({
// 若没有配置环境变量,请用百炼API Key将下行替换为:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
baseURL: "https://dashscope.aliyuncs.com/api/v2/apps/protocols/compatible-mode/v1"
});
async function main() {
const response = await openai.responses.create({
model: "qwen3-max-2026-01-23",
input: "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容",
tools: [
{ type: "web_search" },
{ type: "web_extractor" },
{ type: "code_interpreter" }
],
enable_thinking: true
});
console.log("====================回复内容====================");
console.log(response.output_text);
// 打印工具调用次数
console.log("====================工具调用次数====================");
if (response.usage && response.usage.x_tools) {
console.log(`网页抓取次数: ${response.usage.x_tools.web_extractor?.count || 0}`);
console.log(`联网搜索次数: ${response.usage.x_tools.web_search?.count || 0}`);
}
// 取消以下注释查看中间过程的输出
// console.log(JSON.stringify(response.output[0], null, 2));
}
main();curl -X POST https://dashscope.aliyuncs.com/api/v2/apps/protocols/compatible-mode/v1/responses \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-max-2026-01-23",
"input": "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容",
"tools": [
{"type": "web_search"},
{"type": "web_extractor"},
{"type": "code_interpreter"}
],
"enable_thinking": true
}'运行以上代码可获取如下回复:
====================回复内容====================
根据阿里云百炼官方文档,我为您总结了**代码解释器**功能的核心内容:
## 一、功能定位
...
> **文档来源**:阿里云百炼官方文档 - [Qwen代码解释器](https://help.aliyun.com/zh/model-studio/qwen-code-interpreter) 与 [Assistant API代码解释器](https://help.aliyun.com/zh/model-studio/code-interpreter)(更新时间:2025年12月)
====================工具调用次数====================
网页抓取运行次数: 1流式输出
网页抓取耗时较长,建议启用流式输出,实时获取中间过程输出结果。
OpenAI 兼容-Responses API
import os
from openai import OpenAI
client = OpenAI(
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/api/v2/apps/protocols/compatible-mode/v1"
)
stream = client.responses.create(
model="qwen3-max-2026-01-23",
input="请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容",
tools=[
{"type": "web_search"},
{"type": "web_extractor"},
{"type": "code_interpreter"}
],
stream=True,
extra_body={"enable_thinking": True}
)
reasoning_started = False
output_started = False
for chunk in stream:
# 打印思考过程
if chunk.type == 'response.reasoning_summary_text.delta':
if not reasoning_started:
print("="*20 + "思考过程" + "="*20)
reasoning_started = True
print(chunk.delta, end='', flush=True)
# 打印工具调用完成
elif chunk.type == 'response.output_item.done':
if hasattr(chunk, 'item') and hasattr(chunk.item, 'type'):
if chunk.item.type == 'web_extractor_call':
print("\n" + "="*20 + "工具调用" + "="*20)
print(chunk.item.goal)
print(chunk.item.output)
elif chunk.item.type == 'reasoning':
reasoning_started = False
# 打印回复内容
elif chunk.type == 'response.output_text.delta':
if not output_started:
print("\n" + "="*20 + "回复内容" + "="*20)
output_started = True
print(chunk.delta, end='', flush=True)
# 响应完成,打印工具调用次数
elif chunk.type == 'response.completed':
print("\n" + "="*20 + "工具调用次数" + "="*20)
usage = chunk.response.usage
if hasattr(usage, 'x_tools') and usage.x_tools:
print(f"网页抓取次数: {usage.x_tools.get('web_extractor', {}).get('count', 0)}")
print(f"联网搜索次数: {usage.x_tools.get('web_search', {}).get('count', 0)}")import OpenAI from "openai";
import process from 'process';
const openai = new OpenAI({
// 若没有配置环境变量,请用百炼API Key将下行替换为:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
baseURL: "https://dashscope.aliyuncs.com/api/v2/apps/protocols/compatible-mode/v1"
});
async function main() {
const stream = await openai.responses.create({
model: "qwen3-max-2026-01-23",
input: "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容",
tools: [
{ type: "web_search" },
{ type: "web_extractor" },
{ type: "code_interpreter" }
],
stream: true,
enable_thinking: true
});
let reasoningStarted = false;
let outputStarted = false;
for await (const chunk of stream) {
// 打印思考过程
if (chunk.type === 'response.reasoning_summary_text.delta') {
if (!reasoningStarted) {
console.log("====================思考过程====================");
reasoningStarted = true;
}
process.stdout.write(chunk.delta);
}
// 打印工具调用完成
else if (chunk.type === 'response.output_item.done') {
if (chunk.item && chunk.item.type === 'web_extractor_call') {
console.log("\n" + "====================工具调用====================");
console.log(chunk.item.goal);
console.log(chunk.item.output);
} else if (chunk.item && chunk.item.type === 'reasoning') {
reasoningStarted = false;
}
}
// 打印回复内容
else if (chunk.type === 'response.output_text.delta') {
if (!outputStarted) {
console.log("\n" + "====================回复内容====================");
outputStarted = true;
}
process.stdout.write(chunk.delta);
}
// 响应完成,打印工具调用次数
else if (chunk.type === 'response.completed') {
console.log("\n" + "====================工具调用次数====================");
const usage = chunk.response.usage;
if (usage && usage.x_tools) {
console.log(`网页抓取次数: ${usage.x_tools.web_extractor?.count || 0}`);
console.log(`联网搜索次数: ${usage.x_tools.web_search?.count || 0}`);
}
}
}
}
main();curl -X POST https://dashscope.aliyuncs.com/api/v2/apps/protocols/compatible-mode/v1/responses \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-max-2026-01-23",
"input": "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容",
"tools": [
{"type": "web_search"},
{"type": "web_extractor"},
{"type": "code_interpreter"}
],
"enable_thinking": true,
"stream": true
}'OpenAI 兼容-Chat Completions API
import os
from openai import OpenAI
client = OpenAI(
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1"
)
stream = client.chat.completions.create(
model="qwen3-max-2026-01-23",
messages=[
{"role": "user", "content": "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容"}
],
extra_body={
"enable_search": True,
"search_options": {"search_strategy": "agent_max"}
},
stream=True
)
for chunk in stream:
print(chunk)import OpenAI from "openai";
import process from 'process';
const openai = new OpenAI({
// 若没有配置环境变量,请用百炼API Key将下行替换为:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1"
});
async function main() {
const stream = await openai.chat.completions.create({
model: "qwen3-max-2026-01-23",
messages: [
{ role: "user", content: "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容" }
],
enable_search: true,
search_options: { search_strategy: "agent_max" },
stream: true
});
for await (const chunk of stream) {
console.log(chunk);
}
}
main();curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-max-2026-01-23",
"messages": [
{"role": "user", "content": "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容"}
],
"enable_search": true,
"search_options": {"search_strategy": "agent_max"},
"stream": true
}'DashScope
不支持 Java SDK。
import os
import dashscope
from dashscope import Generation
# 若没有配置环境变量,请用百炼API Key将下行替换为:dashscope.api_key = "sk-xxx"
dashscope.api_key = os.getenv("DASHSCOPE_API_KEY")
response = Generation.call(
model="qwen3-max-2026-01-23",
messages=[
{"role": "user", "content": "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容"}
],
enable_search=True,
search_options={"search_strategy": "agent_max"},
enable_thinking=True,
result_format="message",
stream=True,
incremental_output=True
)
reasoning_started = False
output_started = False
last_usage = None
for chunk in response:
if chunk.status_code == 200:
message = chunk.output.choices[0].message
# 打印思考过程
if hasattr(message, 'reasoning_content') and message.reasoning_content:
if not reasoning_started:
print("="*20 + "思考过程" + "="*20)
reasoning_started = True
print(message.reasoning_content, end='', flush=True)
# 打印回复内容
if hasattr(message, 'content') and message.content:
if not output_started:
print("\n" + "="*20 + "回复内容" + "="*20)
output_started = True
print(message.content, end='', flush=True)
# 保存最后的 usage 信息
if hasattr(chunk, 'usage') and chunk.usage:
last_usage = chunk.usage
# 打印工具调用次数
if last_usage:
print("\n" + "="*20 + "工具调用次数" + "="*20)
if hasattr(last_usage, 'plugins') and last_usage.plugins:
print(f"网页抓取次数: {last_usage.plugins.get('web_extractor', {}).get('count', 0)}")curl -X POST https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "X-DashScope-SSE: enable" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-max-2026-01-23",
"input": {
"messages": [
{
"role": "user",
"content": "请访问阿里云百炼代码解释器部分的官方文档,并总结主要内容"
}
]
},
"parameters": {
"enable_thinking": true,
"enable_search": true,
"search_options": {
"search_strategy": "agent_max"
},
"result_format": "message"
}
}'计费说明
计费涉及以下方面:
模型调用费用:抓取的网页内容会拼接到提示词中,增加模型的输入 Token,按照模型的标准价格计费。价格详情请参考模型列表。
工具调用费用:包含网页抓取与联网搜索的费用。
联网搜索工具每 1000 次调用费用:
中国内地:4元。
国际: 73.392381元。
网页抓取工具限时免费。
该文章对您有帮助吗?