Window Function是社区版MySQL 8.0为提升查询分析能力而引入的功能,在PolarDB MySQL版8.0版本中对Window Function进行了全面支持,并可以做并行执行。
前提条件
集群版本需为PolarDB MySQL版8.0集群版,且Revision version为8.0.2.2.0或以上,您可以参见查询版本号确认集群版本。
在Window Function中只有使用了Partition by子句,才可以并行执行查询。
使用方法
语法:
目前在PolarDB中Window Function只能通过
EXPLAIN FORMAT=TREE
语句来显示。示例:
如下示例中创建了1张表
employee_salaries
,且在表里插入了一些数据:CREATE TABLE `employee_salaries` ( `dept` varchar(20) DEFAULT NULL, `name` varchar(20) DEFAULT NULL, `salary` int DEFAULT NULL ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci; INSERT INTO `employee_salaries` VALUES ('Engineering','Dharma',3500), ('Engineering','Bình',3000), ('Engineering','Adalynn',2800), ('Engineering','Samuel',2500), ('Engineering','Cveta',2200), ('Engineering','eve',2000), ('Engineering','Dharma',3500), ('Sales','Carbry',500), ('Sales','Clytemnestra',400), ('Sales','Juraj',300), ('Sales','Kalpana',300), ('Sales','Svantepolk',250), ('Sales','Angelo',200);
如下是
employee_salaries
表的并行查询计划:explain format=tree select ROW_NUMBER() OVER(partition by dept order by salary desc) AS 'row_number' from employee_salaries\G *************************** 1. row *************************** EXPLAIN: -> Gather (slice: 1; workers: 4) (cost=26.42 rows=12) -> Window aggregate (cost=15.67 rows=3) -> Repartition (hash keys: employee_salaries.dept; slice: 2; workers: 4) (cost=15.33 rows=3) -> Sort: employee_salaries.dept, employee_salaries.salary DESC (cost=1.55 rows=13) -> Parallel table scan on employee_salaries, with parallel partitions: 4
如上所示,在
employee_salaries
表完成并行扫描后,会将数据按照Partition by子句中指定的key(employee_salaries.dept
)分发到下一阶段的Worker中,从而保证Window Function可以完成并行计算且保证结果的正确性,最终在Leader上完成汇总即可。
文档内容是否对您有帮助?