本文为您介绍MapReduce WordCount示例程序。
前提条件
已通过快速入门完成测试所需环境配置。
测试准备
准备好测试程序的JAR包,假设名字为mapreduce-examples.jar,本地存放路径为MaxCompute客户端bin目录下data\resources。
创建测试表。
CREATE TABLE wc_in (key STRING, value STRING); CREATE TABLE wc_out (key STRING, cnt BIGINT);
添加测试资源。
-- 首次添加忽略-f覆盖指令。 add jar data\resources\mapreduce-examples.jar -f;
使用Tunnel将MaxCompute客户端bin目录下data.txt导入wc_in表中。
tunnel upload data.txt wc_in;
导入wc_in表的数据如下。
hello,odps
测试步骤
在MaxCompute客户端中执行WordCount。
jar -resources mapreduce-examples.jar -classpath data\resources\mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.WordCount wc_in wc_out
预期结果
作业成功结束后,输出表wc_out中的内容如下。
+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |
+------------+------------+
代码示例
Pom依赖信息,请参见注意事项。
package com.aliyun.odps.mapred.open.example;
import java.io.IOException;
import java.util.Iterator;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.mapred.JobClient;
import com.aliyun.odps.mapred.MapperBase;
import com.aliyun.odps.mapred.ReducerBase;
import com.aliyun.odps.mapred.conf.JobConf;
import com.aliyun.odps.mapred.utils.InputUtils;
import com.aliyun.odps.mapred.utils.OutputUtils;
import com.aliyun.odps.mapred.utils.SchemaUtils;
public class WordCount {
public static class TokenizerMapper extends MapperBase {
private Record word;
private Record one;
@Override
public void setup(TaskContext context) throws IOException {
word = context.createMapOutputKeyRecord();
one = context.createMapOutputValueRecord();
one.set(new Object[] { 1L });
System.out.println("TaskID:" + context.getTaskID().toString());
}
@Override
public void map(long recordNum, Record record, TaskContext context)
throws IOException {
for (int i = 0; i < record.getColumnCount(); i++) {
word.set(new Object[] { record.get(i).toString() });
context.write(word, one);
}
}
}
/**
* A combiner class that combines map output by sum them.
**/
public static class SumCombiner extends ReducerBase {
private Record count;
@Override
public void setup(TaskContext context) throws IOException {
count = context.createMapOutputValueRecord();
}
/**Combiner实现的接口和Reducer一样,是可以立即在Mapper本地执行的一个Reduce,作用是减少Mapper的输出量。*/
@Override
public void reduce(Record key, Iterator<Record> values, TaskContext context)
throws IOException {
long c = 0;
while (values.hasNext()) {
Record val = values.next();
c += (Long) val.get(0);
}
count.set(0, c);
context.write(key, count);
}
}
/**
* A reducer class that just emits the sum of the input values.
**/
public static class SumReducer extends ReducerBase {
private Record result = null;
@Override
public void setup(TaskContext context) throws IOException {
result = context.createOutputRecord();
}
@Override
public void reduce(Record key, Iterator<Record> values, TaskContext context)
throws IOException {
long count = 0;
while (values.hasNext()) {
Record val = values.next();
count += (Long) val.get(0);
}
result.set(0, key.get(0));
result.set(1, count);
context.write(result);
}
}
public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: WordCount <in_table> <out_table>");
System.exit(2);
}
JobConf job = new JobConf();
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(SumCombiner.class);
job.setReducerClass(SumReducer.class);
/**设置Mapper中间结果的key和value的Schema, Mapper的中间结果输出也是Record的形式。*/
job.setMapOutputKeySchema(SchemaUtils.fromString("word:string"));
job.setMapOutputValueSchema(SchemaUtils.fromString("count:bigint"));
/**设置输入和输出的表信息。*/
InputUtils.addTable(TableInfo.builder().tableName(args[0]).build(), job);
OutputUtils.addTable(TableInfo.builder().tableName(args[1]).build(), job);
JobClient.runJob(job);
}
}
文档内容是否对您有帮助?