本文为您介绍MapReduce的Pipeline示例。
前提条件
已通过快速入门完成测试所需环境配置。
测试准备
准备好测试程序的JAR包,假设名字为mapreduce-examples.jar,本地存放路径为MaxCompute客户端bin目录下data\resources。
准备好Pipeline的测试表和资源。
创建测试表。
CREATE TABLE wc_in (key STRING, value STRING); CREATE TABLE wc_out(key STRING, cnt BIGINT);
添加测试资源。
-- 首次添加忽略-f覆盖指令。 add jar data\resources\mapreduce-examples.jar -f;
使用Tunnel将MaxCompute客户端bin目录下data.txt导入wc_in表中。
tunnel upload data.txt wc_in;
导入wc_in表的数据文件data的内容。
hello,odps
测试步骤
在MaxCompute客户端中执行WordCountPipeline。
jar -resources mapreduce-examples.jar -classpath data\resources\mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.WordCountPipeline wc_in wc_out;
预期结果
作业成功结束后,输出表wc_out中的内容如下。
+------------+------------+
| key | cnt |
+------------+------------+
| hello | 1 |
| odps | 1 |
+------------+------------+
代码示例
Pom依赖信息,请参见注意事项。
package com.aliyun.odps.mapred.open.example;
import java.io.IOException;
import java.util.Iterator;
import com.aliyun.odps.Column;
import com.aliyun.odps.OdpsException;
import com.aliyun.odps.OdpsType;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.mapred.Job;
import com.aliyun.odps.mapred.MapperBase;
import com.aliyun.odps.mapred.ReducerBase;
import com.aliyun.odps.pipeline.Pipeline;
public class WordCountPipelineTest {
public static class TokenizerMapper extends MapperBase {
Record word;
Record one;
@Override
public void setup(TaskContext context) throws IOException {
word = context.createMapOutputKeyRecord();
one = context.createMapOutputValueRecord();
one.setBigint(0, 1L);
}
@Override
public void map(long recordNum, Record record, TaskContext context)
throws IOException {
for (int i = 0; i < record.getColumnCount(); i++) {
String[] words = record.get(i).toString().split("\\s+");
for (String w : words) {
word.setString(0, w);
context.write(word, one);
}
}
}
}
public static class SumReducer extends ReducerBase {
private Record value;
@Override
public void setup(TaskContext context) throws IOException {
value = context.createOutputValueRecord();
}
@Override
public void reduce(Record key, Iterator<Record> values, TaskContext context)
throws IOException {
long count = 0;
while (values.hasNext()) {
Record val = values.next();
count += (Long) val.get(0);
}
value.set(0, count);
context.write(key, value);
}
}
public static class IdentityReducer extends ReducerBase {
private Record result;
@Override
public void setup(TaskContext context) throws IOException {
result = context.createOutputRecord();
}
@Override
public void reduce(Record key, Iterator<Record> values, TaskContext context)
throws IOException {
while (values.hasNext()) {
result.set(0, key.get(0));
result.set(1, values.next().get(0));
context.write(result);
}
}
}
public static void main(String[] args) throws OdpsException {
if (args.length != 2) {
System.err.println("Usage: WordCountPipeline <in_table> <out_table>");
System.exit(2);
}
Job job = new Job();
/**构造Pipeline的过程中,如果不指定Mapper的OutputKeySortColumns、PartitionColumns、OutputGroupingColumns,框架会默认使用其OutputKey作为此三者的默认配置。
*/
Pipeline pipeline = Pipeline.builder()
.addMapper(TokenizerMapper.class)
.setOutputKeySchema(
new Column[] { new Column("word", OdpsType.STRING) })
.setOutputValueSchema(
new Column[] { new Column("count", OdpsType.BIGINT) })
.setOutputKeySortColumns(new String[] { "word" })
.setPartitionColumns(new String[] { "word" })
.setOutputGroupingColumns(new String[] { "word" })
.addReducer(SumReducer.class)
.setOutputKeySchema(
new Column[] { new Column("word", OdpsType.STRING) })
.setOutputValueSchema(
new Column[] { new Column("count", OdpsType.BIGINT)})
.addReducer(IdentityReducer.class).createPipeline();
/**将pipeline的设置到jobconf中,如果需要设置combiner,是通过jobconf来设置。*/
job.setPipeline(pipeline);
/**设置输入输出表。*/
job.addInput(TableInfo.builder().tableName(args[0]).build());
job.addOutput(TableInfo.builder().tableName(args[1]).build());
/**作业提交并等待结束。*/
job.submit();
job.waitForCompletion();
System.exit(job.isSuccessful() == true ? 0 : 1);
}
}
文档内容是否对您有帮助?