您可以通过托管模型构建AI应用的核心底座,由Function AI基于函数计算封装模型体验,提供Serverless GPU运行时服务。
什么是模型服务
模型服务能力是一项全面托管的模型服务,通过Serverless GPU计算,托管开源与微调模型实现统一的模型构建,为您提供构建生成式AI应用所需的一系列模型能力。
模型服务底层依赖函数计算的GPU作为底层算力,您可以无需关心底层基础设施的管理,只需专注于AI应用的开发,一键拉取大模型,并自动生成开发所需的调用API。
使用模型服务,您可以轻松试验和评估适合您的大模型,通过微调(SFT)和检索增强生成(RAG)等技术利用您的数据对大模型进行私人定制,构建仅服务于您的专属大模型。
模型服务来源
您可以选择平台预设的模型创建服务,此时系统会自动从ModelScope社区拉取模型。如果需要使用预设模型以外的自定义模型,请提前准备好模型文件,并将模型存储在对象存储 OSS或打包成镜像。
ModelScope
支持从ModelScope社区拉取其他未在预设列表中的模型,此时,需要您手动输入以下参数:
ModelScope ID:模型ID。
版本号:模型版本,可选。
Token:SDK令牌,仅私有模型需要,您可以登录魔搭社区获取访问令牌。

对象存储OSS
如果您的模型文件存储在对象存储OSS中,根据界面提示,选择Bucket 存储桶并设置路径。

自定义模型镜像
如果您已将模型打包为镜像,需将镜像托管至阿里云容器镜像ACR,然后根据界面提示选择ACR中的镜像。

模型服务将自动从对应来源拉取模型并部署,不同的来源下载速率不一致,可关注部署日志来观测下载速率。以Qwen7B为例,通常下载时间为分钟级。
模型执行框架
目前模型支持ModelScope Library作为底层模型执行框架,请确保自定义模型来源可被ModelScope Library执行并部署。更多信息,请参见Library介绍。
目前ModelScope Library支持的模型服务列表,请参见ModelScope Library支持的模型服务列表。
创建模型服务
创建模型的操作步骤请参见以下文档:
关于模型推理引擎的选型,请参见模型推理引擎概览与选型指南。
访问模型服务
模型服务创建成功后,您可以在服务详情页面,单击访问地址跳转至API调用示例页面,单击测试可以体验当前模型的交互。


ModelScope Library支持的模型服务列表
模型ID  | 模型Task  | 模型大小(GB)  | 模型版本  | 
thomas/text2vec-base-chinese  | sentence-embedding  | 0.38  | v1.0.0  | 
iic/speech_sambert-hifigan_tts_andy_en-us_16k  | text-to-speech  | 0.29  | v1.0.1  | 
AI-ModelScope/stable-diffusion-v1.5-no-safetensor  | text-to-image-synthesis  | 11.15  | v1.0.0  | 
iic/speech_sambert-hifigan_tts_zhizhe_emo_zh-cn_16k  | text-to-speech  | 0.29  | v1.0.3  | 
iic/nlp_bert_document-segmentation_english-base  | document-segmentation  | 0.41  | v1.0.1  | 
iic/speech_sambert-hifigan_tts_en-us_16k  | text-to-speech  | 0.35  | v1.0.1  | 
iic/ofa_ocr-recognition_document_base_zh  | ocr-recognition  | 0.66  | v1.0.1  | 
iic/nlp_lstm_named-entity-recognition_chinese-social_media  | named-entity-recognition  | 0.02  | v1.0.0  | 
iic/nlp_seqgpt-560m  | text-generation  | 1.06  | v1.0.1  | 
iic/nlp_palm2.0_text-generation_chinese-large  | text-generation  | 2.34  | v1.1.0  | 
iic/nlp_raner_named-entity-recognition_english-large-ecom  | named-entity-recognition  | 2.11  | v1.0.0  | 
lskhh/flower_classification14  | image-classification  | 1.28  | v1.0.3  | 
iic/speech_sambert-hifigan_tts_indah_Indonesian_16k  | text-to-speech  | 0.24  | v1.0.2  | 
iic/speech_eres2net_large_mej_lre_16k_common  | speech-language-recognition  | 0.11  | v1.0.4  | 
Stefanieliang/cv_vit-base_image-classification_Dailylife-labels_flowers  | image-classification  | 1.28  | v1.0.0  | 
iic/cv_segformer-b2_image_semantic-segmentation_coco-stuff164k  | image-segmentation  | 0.31  | v2.0.0  | 
iic/speech_eres2net_base_mej_lre_16k_common  | speech-language-recognition  | 0.04  | v1.0.1  | 
iic/nlp_structbert_fact-checking_chinese-base  | nli  | 0.38  | v1.0.1  | 
AI-ModelScope/opt-125  | text-generation  | 0.7  | v1.0.0  | 
iic/nlp_structbert_emotion-classification_chinese-tiny  | text-classification  | 0.03  | v1.0.0  | 
Fengshenbang/Taiyi-Stable-Diffusion-1B-Chinese-v0.1  | text-to-image-synthesis  | 3.89  | v1.0.0  | 
Fengshenbang/Erlangshen-RoBERTa-110M-NLI  | text-classification  | 0.38  | v1.0.0  | 
iic/nlp_ponet_extractive-summarization_doc-level_chinese-base  | extractive-summarization  | 0.44  | v1.0.0  | 
chaoscodes/TinyLlama-1.1B-step-50K-105b  | text-generation  | 8.2  | v1.0.0  | 
xiaolv/ocr_big  | ocr-recognition  | 0.07  | v1.0.0  | 
dienstag/chinese-bert-wwm  | fill-mask  | 1.15  | v1.0.0  | 
Fengshenbang/Wenzhong-GPT2-3.5B  | text-generation  | 6.69  | v1.0.0  | 
ccyh123/Qwen-VL-Chat-Int4  | chat  | 9.08  | v1.0.0  | 
dienstag/chinese-macbert-large  | fill-mask  | 3.73  | v1.0.0  | 
Fengshenbang/Erlangshen-TCBert-330M-Sentence-Embedding-Chinese  | fill-mask  | 1.3  | v1.0.1  | 
iic/nlp_masts_backbone_clue_chinese-large  | fill-mask  | 1.21  | v1.4.1  | 
Fengshenbang/Erlangshen-BERT-120M-IE-Chinese  | fill-mask  | 0.39  | v1.0.0  | 
iic/cv_resnet152_open-vocabulary-detection_vild  | open-vocabulary-detection  | 0.31  | v1.0.4  | 
iic/nlp_debertav2_fill-mask_chinese-base  | fill-mask  | 0.7  | v1.0.1  | 
Fengshenbang/Erlangshen-UniMC-RoBERTa-110M-Chinese  | fill-mask  | 0.38  | v1.0.0  | 
dienstag/chinese-xlnet-mid  | fill-mask  | 1.65  | v1.0.0  | 
Fengshenbang/Erlangshen-TCBert-1.3B-Sentence-Embedding-Chinese  | fill-mask  | 4.77  | v1.0.1  | 
dienstag/Analog-Diffusion  | text-to-image-synthesis  | 3.97  | v1.0  | 
iic/multi-modal_rleg-vit-large-patch14  | generative-multi-modal-embedding  | 1.59  | v0.0.1  | 
dienstag/portraitplus  | text-to-image-synthesis  | 3.97  | v1.0  | 
iic/zero-shot-classify-SSTuning-base  | zero-shot-classify-sstuning  | 0.47  | v1.0.2  | 
dienstag/vintedois-diffusion-v0-1  | text-to-image-synthesis  | 3.98  | v0.1  | 
dienstag/cino-large-v2  | fill-mask  | 3.82  | v1.0.0  | 
dienstag/rbt4-h312  | fill-mask  | 0.11  | v1.0.0  | 
Fengshenbang/Erlangshen-DeBERTa-v2-97M-CWS-Chinese  | fill-mask  | 0.36  | v1.0.3  | 
Fengshenbang/Erlangshen-TCBert-1.3B-Classification-Chinese  | fill-mask  | 4.77  | v1.0.1  | 
zydfx1111/flower  | image-classification  | 1.28  | v1.0.0  | 
Fengshenbang/Erlangshen-UniMC-DeBERTa-v2-330M-Chinese  | fill-mask  | 1.19  | v1.0.0  | 
dienstag/chinese-electra-180g-base-discriminator  | fill-mask  | 0.76  | v1.0.0  | 
dienstag/chinese-electra-small-ex-generator  | fill-mask  | 0.07  | v1.0.1  | 
zyqlight/plants_classification  | image-classification  | 5.12  | v1.0.3  | 
yonggreen/product_ner  | named-entity-recognition  | 0.38  | 1.0.0  | 
lawup2/my_test_model  | image-captioning  | 0.83  | 1.1.4  | 
MoEE3910/moee_xl  | text-classification  | 0.38  | v1.0  | 
ValeriaWong/flower_classification14  | image-classification  | 1.28  | v1.0.1  | 
asd1821154213/flower_recog  | image-classification  | 1.28  | v1.0.1  | 
Liiiiiii/Vit_Flower_Classification  | image-classification  | 1.28  | v1.0.0  | 
playmake/LRBV1_qwen_350_1738  | chat  | 3.42  | V1.0.0  | 
lskhh/flower_newrecog  | image-classification  | 1.28  | V1.0,0  | 
lskhh/flowers_classification-Dreamwing  | image-classification  | 1.28  | v1.0.0  | 
iic/cv_resnet50_face-detection_retinaface  | face-detection  | 0.1  | v2.0.2  | 
iic/cv_resnet18_ocr-detection-db-line-level_damo  | ocr-detection  | 0.15  | v1.3.0  | 
iic/cv_resnest101_animal_recognition  | animal-recognition  | 0.47  | v1.0.0  | 
iic/nlp_structbert_faq-question-answering_chinese-base  | faq-question-answering  | 0.42  | v1.0.2  | 
iic/nlp_raner_named-entity-recognition_chinese-base-ecom-50cls  | named-entity-recognition  | 0.38  | v1.0.0  |