本文以Python语言为例,介绍如何通过Serverless Devs开发工具,将示例代码部署到函数计算控制台,并安装相关依赖。

背景信息

通过上传一张猫或狗的照片,识别出该照片内的动物是猫还是狗。dog and cat

关于本示例的详细信息,请参见示例工程

前提条件

操作步骤

  1. 执行以下命令,克隆项目。
    git clone https://github.com/awesome-fc/cat-dog-classify.git
  2. 安装依赖。
    1. 执行以下命令进入项目目录。
      cd cat-dog-classify
    2. 执行以下命令安装依赖。
      s build
      输出示例:
      [2021-12-09 07:26:39] [INFO] [S-CLI] - Start ...
      [2021-12-09 07:26:40] [INFO] [FC-BUILD] - Build artifact start...
      [2021-12-09 07:26:40] [INFO] [FC-BUILD] - Use docker for building.
      [2021-12-09 07:26:40] [INFO] [FC-BUILD] - Build function using image: registry.<regionId>.aliyuncs.com/aliyunfc/runtime-python3.6:build-1.9.20
      [2021-12-09 07:26:40] [INFO] [FC-BUILD] - begin pulling image registry.<regionId>.aliyuncs.com/aliyunfc/runtime-python3.6:build-1.9.20, you can also use docker pull registry.cn-beijing.aliyuncs.com/aliyunfc/runtime-python3.6:build-1.9.20 to pull image by yourself.
      build-1.9.20: Pulling from aliyunfc/runtime-python3.6
      f49cf87b52c1: Already exists
      ......
      01ce50b4eb85: Already exists
      02b807385deb: Pull complete
      ......
      9b9fdb8de506: Pull complete
      Digest: sha256:a9a6dab2d6319df741ee135d9749a90b2bb834fd11ee265d1fb106053890****
      Status: Downloaded newer image for registry.<regionId>.aliyuncs.com/aliyunfc/runtime-python3.6:build-1.9.20
       builder begin to build
      [2021-12-09 07:27:57] [INFO] [FC-BUILD] - Build artifact successfully.
      
      Tips for next step
      ======================
      * Invoke Event Function: s local invoke
      * Invoke Http Function: s local start
      * Deploy Resources: s deploy
      End of method: build
    执行完安装依赖的命令后,Serverless Devs会自动安装相关依赖包,并将第三方库下载到.s/build/artifacts/cat-dog/classify/.s/python目录内。
  3. 上传依赖到NAS。
    当您在安装依赖时,函数计算引用的代码包在解压后可能会出现大于代码包限制的情况,为了减少代码包的体积,您可以将大内存的依赖和相对较大的模型参数文件存放在NAS中。
    1. 执行以下命令,初始化NAS。
      s nas init
      输出示例:
      [2021-12-09 07:29:58] [INFO] [S-CLI] - Start ...
      [2021-12-09 07:29:59] [INFO] [FC-DEPLOY] - Using region: cn-shenzhen
      [2021-12-09 07:29:59] [INFO] [FC-DEPLOY] - Using access alias: default
      [2021-12-09 07:29:59] [INFO] [FC-DEPLOY] - Using accessKeyID: LTAI4G4cwJkK4Rza6xd9****
      [2021-12-09 07:29:59] [INFO] [FC-DEPLOY] - Using accessKeySecret: eCc0GxSpzfq1DVspnqqd6nmYNN****
      ......
      [2021-12-09 07:30:01] [INFO] [FC-DEPLOY] - Generated vpcConfig:
      securityGroupId: sg-wz90u1syk2h1f14b****
      vSwitchId: vsw-wz9qnuult4q5g4f7n****
      vpcId: vpc-wz9x9bzs0wtvjgt6n****
      
      ......
      [2021-12-09 07:30:15] [INFO] [FC-DEPLOY] - Checking Trigger httpTrigger exists
       Make service _FC_NAS_cat-dog success.
       Make function _FC_NAS_cat-dog/nas_dir_checker success.
       Make trigger _FC_NAS_cat-dog/nas_dir_checker/httpTrigger success.
      [2021-12-09 07:30:25] [INFO] [FC-DEPLOY] - Checking Service _FC_NAS_cat-dog exists
      [2021-12-09 07:30:25] [INFO] [FC-DEPLOY] - Checking Function nas_dir_checker exists
      [2021-12-09 07:30:26] [INFO] [FC-DEPLOY] - Checking Trigger httpTrigger exists
      
      There is auto config in the service: _FC_NAS_cat-dog
      [2021-12-09 07:30:26] [INFO] [FC-DEPLOY] - Generated nasConfig:
      groupId: 10003
      mountPoints:
        - fcDir: /mnt/auto
          nasDir: /cat-dog
          serverAddr: 2bfb748****.cn-shenzhen.nas.aliyuncs.com
      userId: 10003
      
      cat-dog:
        userId:      10003
        groupId:     10003
        mountPoints:
          -
            serverAddr: 2bfb748****.cn-shenzhen.nas.aliyuncs.com
            nasDir:     /cat-dog
            fcDir:      /mnt/auto
    2. 执行以下命令,上传依赖到NAS。
      s nas upload -r .s/build/artifacts/cat-dog/classify/.s/python/ /mnt/auto/python
      输出示例:
      [2021-12-09 07:33:14] [INFO] [S-CLI] - Start ...
      Packing ...
      Package complete.
       Upload done
      
      Tips for next step
      ======================
      * Invoke remote function: s invoke
      End of method: nas
    3. 执行以下命令,上传模型到NAS。
      s nas upload -r src/model/ /mnt/auto/model
      输出示例:
      [2021-12-09 07:52:26] [INFO] [S-CLI] - Start ...
      Packing ...
      Package complete.
       Upload done
      
      Tips for next step
      ======================
      * Invoke remote function: s invoke
      End of method: nas
    4. 执行以下命令,查看NAS目录。
      s nas command ls /mnt/auto/
      输出示例:
      [2021-12-09 07:53:01] [INFO] [S-CLI] - Start ...
      model
      python
      
      
      Tips for next step
      ======================
      * Invoke remote function: s invoke
      End of method: nas
  4. 执行以下命令,部署项目。
    s deploy
    输出示例:
    [2021-12-09 07:56:15] [INFO] [S-CLI] - Start ...
    [2021-12-09 07:56:16] [INFO] [FC-DEPLOY] - Using region: cn-shenzhen
    [2021-12-09 07:56:16] [INFO] [FC-DEPLOY] - Using access alias: default
    [2021-12-09 07:56:16] [INFO] [FC-DEPLOY] - Using accessKeyID: LTAI4G4cwJkK4Rza6xd9****
    [2021-12-09 07:56:16] [INFO] [FC-DEPLOY] - Using accessKeySecret: eCc0GxSpzfq1DVspnqqd6nmYNN****
     ......
    [2021-12-09 07:56:19] [INFO] [FC-DEPLOY] - Generated logConfig:
    enableInstanceMetrics: true
    enableRequestMetrics: true
    logBeginRule: ~
    logstore: fc-service-cat-dog-logstore
    project: 188077086902****-cn-shenzhen-logproject
    ......
    There is auto config in the service: cat-dog
    
    Tips for next step
    ======================
    * Display information of the deployed resource: s info
    * Display metrics: s metrics
    * Display logs: s logs
    * Invoke remote function: s invoke
    * Remove Service: s remove service
    * Remove Function: s remove function
    * Remove Trigger: s remove trigger
    * Remove CustomDomain: s remove domain
    
    
    
    cat-dog:
      region:   cn-shenzhen
      service:
        name: cat-dog
      function:
        name:       classify
        runtime:    python3
        handler:    predict.handler
        memorySize: 1024
        timeout:    120
      url:
        system_url:    https://188077086902****.cn-shenzhen.fc.aliyuncs.com/2016-08-15/proxy/cat-dog/classify/
        custom_domain:
          -
            domain: http://classify.cat-dog.188077086902****.cn-shenzhen.fc.devsapp.net
      triggers:
        -
          type: http
          name: httpTrigger
    成功部署该项目后,您可以在执行输出中查看到函数计算生成的临时域名,通过该域名可以访问刚部署的函数,例如您可以使用浏览器访问该域名,然后选择目标图片识别图中的动物:cat-dogserverless devs
    说明 临时域名仅用作演示以及开发,具有时效性。如需用作生产,请绑定已经在阿里云备案的域名。详细信息,请参见配置自定义域名

使用预留消除冷启动毛刺

函数计算具有动态伸缩的特性,根据并发请求量,自动弹性扩容出执行环境。在这个典型的深度学习示例中,加载依赖和模型参数消耗的时间很长,在您设置的1 GB规格的函数中,并发访问的时间为10s左右,有时可能大于20s。

因此不可避免的会出现函数调用毛刺的情况,即冷启动时间大于10s,在这种情况下,您可以使用设置预留的方式来避免冷启动。您可以在项目目录内执行以下命令消除冷启动毛刺:
s provision put --target 10 --qualifier LATEST
同时,当您需要了解服务器的最大承受能力,实现更好地运行和开发时,您可以使用Serverless Devs的压测命令对指定的函数进行压测。详细信息,请参见基本功能
注意 当您完成压测后,请执行以下命令取消预留:
s provision put --target 0 --qualifier LATEST

更多信息

您可以单击点我去体验,体验本文介绍的基于函数计算实现AI推理的最佳实践。

点我去体验