PyODPS的空值处理

本文为您介绍如何使用DataWorks的PyODPS节点处理PyODPS的空值。

前提条件

您需要完成以下操作:

操作步骤

  1. 准备测试数据。
    1. 登录DataWorks控制台
    2. 创建表并上传数据。操作方法请参见建表并上传数据
      表pytable2的建表语句如下。
      CREATE TABLE `pytable2` (
        `id` string,
        `name` string,
        `f1` double,
        `f2` double,
        `f3` double,
        `f4` double
      ) ;
      示例数据文件pytable2.txt的内容如下。
      0, name1, 1.0, NaN, 3.0, 4.0
      1, name1, 2.0, NaN, NaN, 1.0
      2, name1, 3.0, 4.0, 1.0, NaN
      3, name1, NaN, 1.0, 2.0, 3.0
      4, name1, 1.0, NaN, 3.0, 4.0
      5, name1, 1.0, 2.0, 3.0, 4.0
      6, name1, NaN, NaN, NaN, NaN
  2. 在左侧导航栏上单击工作空间列表

  3. 选择操作列中的快速进入 > 数据开发

  4. 在数据开发页面,右键单击已经创建的业务流程,选择新建节点 > MaxCompute > PyODPS 2

  5. 新建节点对话框,输入节点名称,并单击确认

  6. 在PyODPS 2节点中输入空值处理代码。
    示例代码如下。
    df2 = DataFrame(o.get_table('pytable2'))
    #dropna方法,删除包含空值的行。
    print df2.dropna(subset=['f1','f2','f3','f4']).head()
    
    #包含非空值则不删除,可以使用how='all'。
    print df2.dropna(how='all', subset=['f1','f2','f3','f4']).head()
    print df2.dropna(thresh=3, subset=['f1', 'f2', 'f3', 'f4']).head()
    
    #fillna方法,使用常数或已有的列填充未知值。
    print df2.fillna(100, subset=['f1','f2','f3','f4']).head()
    
    #使用一个已有的列填充未知值。
    print df2.fillna(df2.f2, subset=['f1','f2','f3','f4']).head()
    
    #向前填充。
    print df2.fillna(method='bfill', subset=['f1', 'f2', 'f3', 'f4']).head()
    
    #向后填充。
    print df2.fillna(method='ffill', subset=['f1', 'f2', 'f3', 'f4']).head()
  7. 单击运行运行节点.png
  8. 运行日志中查看运行结果。运行日志.png
    完整的运行结果如下。
    Sql compiled:
    CREATE TABLE tmp_pyodps_d0c7d8c2_be38_4d48_b0eb_e89bae5bde01 LIFECYCLE 1 AS
    SELECT *
    FROM WB_BestPractice_dev.`pytable2` t1
    WHERE (((IF(t1.`f1` IS NOT NULL, 1, 0) + IF(t1.`f2` IS NOT NULL, 1, 0)) + IF(t1.`f3` IS NOT NULL, 1, 0)) + IF(t1.`f4` IS NOT NULL, 1, 0)) >= 4
    Instance ID: 20191010071154980g2hic292
    
      id   name   f1   f2   f3   f4
    0  0  name1  1.0  NaN  3.0  4.0
    1  1  name1  2.0  NaN  NaN  1.0
    2  2  name1  3.0  4.0  1.0  NaN
    3  3  name1  NaN  1.0  2.0  3.0
    4  4  name1  1.0  NaN  3.0  4.0
    5  5  name1  1.0  2.0  3.0  4.0
    6  6  name1  NaN  NaN  NaN  NaN
    Sql compiled:
    CREATE TABLE tmp_pyodps_49b46768_f589_48f6_be8a_b7139f31f6f2 LIFECYCLE 1 AS
    SELECT *
    FROM WB_BestPractice_dev.`pytable2` t1
    WHERE (((IF(t1.`f1` IS NOT NULL, 1, 0) + IF(t1.`f2` IS NOT NULL, 1, 0)) + IF(t1.`f3` IS NOT NULL, 1, 0)) + IF(t1.`f4` IS NOT NULL, 1, 0)) >= 1
    
    Instance ID: 20191010071159759g0dk9592
    
    
      id   name   f1   f2   f3   f4
    0  0  name1  1.0  NaN  3.0  4.0
    1  1  name1  2.0  NaN  NaN  1.0
    2  2  name1  3.0  4.0  1.0  NaN
    3  3  name1  NaN  1.0  2.0  3.0
    4  4  name1  1.0  NaN  3.0  4.0
    5  5  name1  1.0  2.0  3.0  4.0
    6  6  name1  NaN  NaN  NaN  NaN
    Sql compiled:
    CREATE TABLE tmp_pyodps_7f941800_1539_415b_9257_283ebeb893a6 LIFECYCLE 1 AS
    SELECT *
    FROM WB_BestPractice_dev.`pytable2` t1
    WHERE (((IF(t1.`f1` IS NOT NULL, 1, 0) + IF(t1.`f2` IS NOT NULL, 1, 0)) + IF(t1.`f3` IS NOT NULL, 1, 0)) + IF(t1.`f4` IS NOT NULL, 1, 0)) >= 3
    Instance ID: 20191010071204544giyswx7
    
    0  0  name1  1.0  NaN  3.0  4.0
    1  1  name1  2.0  NaN  NaN  1.0
    2  2  name1  3.0  4.0  1.0  NaN
    3  3  name1  NaN  1.0  2.0  3.0
    4  4  name1  1.0  NaN  3.0  4.0
    5  5  name1  1.0  2.0  3.0  4.0
    6  6  name1  NaN  NaN  NaN  NaN
    Sql compiled:
    CREATE TABLE tmp_pyodps_16d6ea6d_5195_4e4c_8346_644a395852f7 LIFECYCLE 1 AS
    SELECT t1.`id`, t1.`name`, IF(t1.`f1` IS NULL, 100, t1.`f1`) AS `f1`, IF(t1.`f2` IS NULL, 100, t1.`f2`) AS `f2`, IF(t1.`f3` IS NULL, 100, t1.`f3`) AS `f3`, IF(t1.`f4` IS NULL, 100, t1.`f4`) AS `f4`
    FROM WB_BestPractice_dev.`pytable2` t1
    Instance ID: 20191010071209190gyl56292
    
      id   name   f1   f2   f3   f4
    0  0  name1  1.0  NaN  3.0  4.0
    1  1  name1  2.0  NaN  NaN  1.0
    2  2  name1  3.0  4.0  1.0  NaN
    3  3  name1  NaN  1.0  2.0  3.0
    4  4  name1  1.0  NaN  3.0  4.0
    5  5  name1  1.0  2.0  3.0  4.0
    6  6  name1  NaN  NaN  NaN  NaN
    Sql compiled:
    CREATE TABLE tmp_pyodps_40755ebd_2d2a_482e_b360_3f3da0d5422c LIFECYCLE 1 AS
    SELECT t1.`id`, t1.`name`, IF(t1.`f1` IS NULL, t1.`f2`, t1.`f1`) AS `f1`, IF(t1.`f2` IS NULL, t1.`f2`, t1.`f2`) AS `f2`, IF(t1.`f3` IS NULL, t1.`f2`, t1.`f3`) AS `f3`, IF(t1.`f4` IS NULL, t1.`f2`, t1.`f4`) AS `f4`
    FROM WB_BestPractice_dev.`pytable2` t1
    
    Instance ID: 20191010071213970gbp66792
    
    
      id   name   f1   f2   f3   f4
    0  0  name1  1.0  NaN  3.0  4.0
    1  1  name1  2.0  NaN  NaN  1.0
    2  2  name1  3.0  4.0  1.0  NaN
    3  3  name1  NaN  1.0  2.0  3.0
    4  4  name1  1.0  NaN  3.0  4.0
    5  5  name1  1.0  2.0  3.0  4.0
    6  6  name1  NaN  NaN  NaN  NaN
    Sql compiled:
    CREATE TABLE tmp_pyodps_d39fcce1_d8a9_4cc2_8aff_2ed1e9c6bb1b LIFECYCLE 1 AS
    SELECT pyodps_udf_1570691538_d9441c59_c666_4a5d_8154_67d8bc8c24ad(t1.`id`, t1.`name`, t1.`f1`, t1.`f2`, t1.`f3`, t1.`f4`) AS (`id`, `name`, `f1`, `f2`, `f3`, `f4`)
    FROM WB_BestPractice_dev.`pytable2` t1
    Instance ID: 20191010071219627goqv9292
    
    
      id   name   f1   f2   f3   f4
    0  0  name1  1.0  3.0  3.0  4.0
    1  1  name1  2.0  1.0  1.0  1.0
    2  2  name1  3.0  4.0  1.0  NaN
    3  3  name1  1.0  1.0  2.0  3.0
    4  4  name1  1.0  3.0  3.0  4.0
    5  5  name1  1.0  2.0  3.0  4.0
    6  6  name1  NaN  NaN  NaN  NaN
    Sql compiled:
    CREATE TABLE tmp_pyodps_3f190cf0_f9fb_4e06_a942_ab31c0241cd3 LIFECYCLE 1 AS
    SELECT pyodps_udf_1570691566_0330848b_82d3_411c_88e1_cbbcc6adb9c1(t1.`id`, t1.`name`, t1.`f1`, t1.`f2`, t1.`f3`, t1.`f4`) AS (`id`, `name`, `f1`, `f2`, `f3`, `f4`)
    FROM WB_BestPractice_dev.`pytable2` t1
    Instance ID: 20191010071247729gt776792
    
      id   name   f1   f2   f3   f4
    0  0  name1  1.0  1.0  3.0  4.0
    1  1  name1  2.0  2.0  2.0  1.0
    2  2  name1  3.0  4.0  1.0  1.0
    3  3  name1  NaN  1.0  2.0  3.0
    4  4  name1  1.0  1.0  3.0  4.0
    5  5  name1  1.0  2.0  3.0  4.0
    6  6  name1  NaN  NaN  NaN  NaN