本文为您介绍如何使用DataWorks的PyODPS节点处理PyODPS的空值。
前提条件
您需要完成以下操作:- 已开通MaxCompute。
- 已开通DataWorks。
- 在DataWorks上完成业务流程创建,本例使用DataWorks简单模式。详情请参见创建业务流程。
操作步骤
- 准备测试数据。
- 登录DataWorks控制台。
- 创建表并上传数据。操作方法请参见建表并上传数据。表pytable2的建表语句如下。
示例数据文件pytable2.txt的内容如下。CREATE TABLE `pytable2` ( `id` string, `name` string, `f1` double, `f2` double, `f3` double, `f4` double ) ;
0, name1, 1.0, NaN, 3.0, 4.0 1, name1, 2.0, NaN, NaN, 1.0 2, name1, 3.0, 4.0, 1.0, NaN 3, name1, NaN, 1.0, 2.0, 3.0 4, name1, 1.0, NaN, 3.0, 4.0 5, name1, 1.0, 2.0, 3.0, 4.0 6, name1, NaN, NaN, NaN, NaN
在左侧导航栏上单击工作空间列表。
选择操作列中的 。
在数据开发页面,右键单击已经创建的业务流程,选择 。
在新建节点对话框,输入节点名称,并单击确认。
- 在PyODPS 2节点中输入空值处理代码。示例代码如下。
df2 = DataFrame(o.get_table('pytable2')) #dropna方法,删除包含空值的行。 print df2.dropna(subset=['f1','f2','f3','f4']).head() #包含非空值则不删除,可以使用how='all'。 print df2.dropna(how='all', subset=['f1','f2','f3','f4']).head() print df2.dropna(thresh=3, subset=['f1', 'f2', 'f3', 'f4']).head() #fillna方法,使用常数或已有的列填充未知值。 print df2.fillna(100, subset=['f1','f2','f3','f4']).head() #使用一个已有的列填充未知值。 print df2.fillna(df2.f2, subset=['f1','f2','f3','f4']).head() #向前填充。 print df2.fillna(method='bfill', subset=['f1', 'f2', 'f3', 'f4']).head() #向后填充。 print df2.fillna(method='ffill', subset=['f1', 'f2', 'f3', 'f4']).head()
- 单击运行。
- 在运行日志中查看运行结果。完整的运行结果如下。
Sql compiled: CREATE TABLE tmp_pyodps_d0c7d8c2_be38_4d48_b0eb_e89bae5bde01 LIFECYCLE 1 AS SELECT * FROM WB_BestPractice_dev.`pytable2` t1 WHERE (((IF(t1.`f1` IS NOT NULL, 1, 0) + IF(t1.`f2` IS NOT NULL, 1, 0)) + IF(t1.`f3` IS NOT NULL, 1, 0)) + IF(t1.`f4` IS NOT NULL, 1, 0)) >= 4 Instance ID: 20191010071154980g2hic292 id name f1 f2 f3 f4 0 0 name1 1.0 NaN 3.0 4.0 1 1 name1 2.0 NaN NaN 1.0 2 2 name1 3.0 4.0 1.0 NaN 3 3 name1 NaN 1.0 2.0 3.0 4 4 name1 1.0 NaN 3.0 4.0 5 5 name1 1.0 2.0 3.0 4.0 6 6 name1 NaN NaN NaN NaN Sql compiled: CREATE TABLE tmp_pyodps_49b46768_f589_48f6_be8a_b7139f31f6f2 LIFECYCLE 1 AS SELECT * FROM WB_BestPractice_dev.`pytable2` t1 WHERE (((IF(t1.`f1` IS NOT NULL, 1, 0) + IF(t1.`f2` IS NOT NULL, 1, 0)) + IF(t1.`f3` IS NOT NULL, 1, 0)) + IF(t1.`f4` IS NOT NULL, 1, 0)) >= 1 Instance ID: 20191010071159759g0dk9592 id name f1 f2 f3 f4 0 0 name1 1.0 NaN 3.0 4.0 1 1 name1 2.0 NaN NaN 1.0 2 2 name1 3.0 4.0 1.0 NaN 3 3 name1 NaN 1.0 2.0 3.0 4 4 name1 1.0 NaN 3.0 4.0 5 5 name1 1.0 2.0 3.0 4.0 6 6 name1 NaN NaN NaN NaN Sql compiled: CREATE TABLE tmp_pyodps_7f941800_1539_415b_9257_283ebeb893a6 LIFECYCLE 1 AS SELECT * FROM WB_BestPractice_dev.`pytable2` t1 WHERE (((IF(t1.`f1` IS NOT NULL, 1, 0) + IF(t1.`f2` IS NOT NULL, 1, 0)) + IF(t1.`f3` IS NOT NULL, 1, 0)) + IF(t1.`f4` IS NOT NULL, 1, 0)) >= 3 Instance ID: 20191010071204544giyswx7 0 0 name1 1.0 NaN 3.0 4.0 1 1 name1 2.0 NaN NaN 1.0 2 2 name1 3.0 4.0 1.0 NaN 3 3 name1 NaN 1.0 2.0 3.0 4 4 name1 1.0 NaN 3.0 4.0 5 5 name1 1.0 2.0 3.0 4.0 6 6 name1 NaN NaN NaN NaN Sql compiled: CREATE TABLE tmp_pyodps_16d6ea6d_5195_4e4c_8346_644a395852f7 LIFECYCLE 1 AS SELECT t1.`id`, t1.`name`, IF(t1.`f1` IS NULL, 100, t1.`f1`) AS `f1`, IF(t1.`f2` IS NULL, 100, t1.`f2`) AS `f2`, IF(t1.`f3` IS NULL, 100, t1.`f3`) AS `f3`, IF(t1.`f4` IS NULL, 100, t1.`f4`) AS `f4` FROM WB_BestPractice_dev.`pytable2` t1 Instance ID: 20191010071209190gyl56292 id name f1 f2 f3 f4 0 0 name1 1.0 NaN 3.0 4.0 1 1 name1 2.0 NaN NaN 1.0 2 2 name1 3.0 4.0 1.0 NaN 3 3 name1 NaN 1.0 2.0 3.0 4 4 name1 1.0 NaN 3.0 4.0 5 5 name1 1.0 2.0 3.0 4.0 6 6 name1 NaN NaN NaN NaN Sql compiled: CREATE TABLE tmp_pyodps_40755ebd_2d2a_482e_b360_3f3da0d5422c LIFECYCLE 1 AS SELECT t1.`id`, t1.`name`, IF(t1.`f1` IS NULL, t1.`f2`, t1.`f1`) AS `f1`, IF(t1.`f2` IS NULL, t1.`f2`, t1.`f2`) AS `f2`, IF(t1.`f3` IS NULL, t1.`f2`, t1.`f3`) AS `f3`, IF(t1.`f4` IS NULL, t1.`f2`, t1.`f4`) AS `f4` FROM WB_BestPractice_dev.`pytable2` t1 Instance ID: 20191010071213970gbp66792 id name f1 f2 f3 f4 0 0 name1 1.0 NaN 3.0 4.0 1 1 name1 2.0 NaN NaN 1.0 2 2 name1 3.0 4.0 1.0 NaN 3 3 name1 NaN 1.0 2.0 3.0 4 4 name1 1.0 NaN 3.0 4.0 5 5 name1 1.0 2.0 3.0 4.0 6 6 name1 NaN NaN NaN NaN Sql compiled: CREATE TABLE tmp_pyodps_d39fcce1_d8a9_4cc2_8aff_2ed1e9c6bb1b LIFECYCLE 1 AS SELECT pyodps_udf_1570691538_d9441c59_c666_4a5d_8154_67d8bc8c24ad(t1.`id`, t1.`name`, t1.`f1`, t1.`f2`, t1.`f3`, t1.`f4`) AS (`id`, `name`, `f1`, `f2`, `f3`, `f4`) FROM WB_BestPractice_dev.`pytable2` t1 Instance ID: 20191010071219627goqv9292 id name f1 f2 f3 f4 0 0 name1 1.0 3.0 3.0 4.0 1 1 name1 2.0 1.0 1.0 1.0 2 2 name1 3.0 4.0 1.0 NaN 3 3 name1 1.0 1.0 2.0 3.0 4 4 name1 1.0 3.0 3.0 4.0 5 5 name1 1.0 2.0 3.0 4.0 6 6 name1 NaN NaN NaN NaN Sql compiled: CREATE TABLE tmp_pyodps_3f190cf0_f9fb_4e06_a942_ab31c0241cd3 LIFECYCLE 1 AS SELECT pyodps_udf_1570691566_0330848b_82d3_411c_88e1_cbbcc6adb9c1(t1.`id`, t1.`name`, t1.`f1`, t1.`f2`, t1.`f3`, t1.`f4`) AS (`id`, `name`, `f1`, `f2`, `f3`, `f4`) FROM WB_BestPractice_dev.`pytable2` t1 Instance ID: 20191010071247729gt776792 id name f1 f2 f3 f4 0 0 name1 1.0 1.0 3.0 4.0 1 1 name1 2.0 2.0 2.0 1.0 2 2 name1 3.0 4.0 1.0 1.0 3 3 name1 NaN 1.0 2.0 3.0 4 4 name1 1.0 1.0 3.0 4.0 5 5 name1 1.0 2.0 3.0 4.0 6 6 name1 NaN NaN NaN NaN
文档内容是否对您有帮助?