请求体 文本输入 此处以单轮对话作为示例,您也可以进行多轮对话 。 Python import os
import dashscope
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': '你是谁?'}
]
response = dashscope.Generation.call(
# 若没有配置环境变量,请用百炼 API Key 将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model="qwen-plus", # 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
messages=messages,
result_format='message'
)
print(response)
Java // 建议 dashscope SDK 的版本 >= 2.12.0
import java.util.Arrays;
import java.lang.System;
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.InputRequiredException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.utils.JsonUtils;
public class Main {
public static GenerationResult callWithMessage() throws ApiException, NoApiKeyException, InputRequiredException {
Generation gen = new Generation();
Message systemMsg = Message.builder()
.role(Role.SYSTEM.getValue())
.content("You are a helpful assistant.")
.build();
Message userMsg = Message.builder()
.role(Role.USER.getValue())
.content("你是谁?")
.build();
GenerationParam param = GenerationParam.builder()
// 若没有配置环境变量,请用百炼 API Key 将下行替换为:.apiKey("sk-xxx")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
// 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
.model("qwen-plus")
.messages(Arrays.asList(systemMsg, userMsg))
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.build();
return gen.call(param);
}
public static void main(String[] args) {
try {
GenerationResult result = callWithMessage();
System.out.println(JsonUtils.toJson(result));
} catch (ApiException | NoApiKeyException | InputRequiredException e) {
// 使用日志框架记录异常信息
System.err.println("An error occurred while calling the generation service: " + e.getMessage());
}
System.exit(0);
}
}
PHP(HTTP) <?php
$url = "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation";
$apiKey = getenv('DASHSCOPE_API_KEY');
$data = [
// 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
"model" => "qwen-plus",
"input" => [
"messages" => [
[
"role" => "system",
"content" => "You are a helpful assistant."
],
[
"role" => "user",
"content" => "你是谁?"
]
]
],
"parameters" => [
"result_format" => "message"
]
];
$jsonData = json_encode($data);
$ch = curl_init($url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, $jsonData);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_HTTPHEADER, [
"Authorization: Bearer $apiKey",
"Content-Type: application/json"
]);
$response = curl_exec($ch);
$httpCode = curl_getinfo($ch, CURLINFO_HTTP_CODE);
if ($httpCode == 200) {
echo "Response: " . $response;
} else {
echo "Error: " . $httpCode . " - " . $response;
}
curl_close($ch);
?>
Node.js(HTTP) DashScope 未提供 Node.js 环境的 SDK。如需通过 OpenAI Node.js SDK 调用,请参考本文的OpenAI 章节。
import fetch from 'node-fetch';
const apiKey = process.env.DASHSCOPE_API_KEY;
const data = {
model: "qwen-plus", // 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
input: {
messages: [
{
role: "system",
content: "You are a helpful assistant."
},
{
role: "user",
content: "你是谁?"
}
]
},
parameters: {
result_format: "message"
}
};
fetch('https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation', {
method: 'POST',
headers: {
'Authorization': `Bearer ${apiKey}`,
'Content-Type': 'application/json'
},
body: JSON.stringify(data)
})
.then(response => response.json())
.then(data => {
console.log(JSON.stringify(data));
})
.catch(error => {
console.error('Error:', error);
});
C#(HTTP) using System.Net.Http.Headers;
using System.Text;
class Program
{
private static readonly HttpClient httpClient = new HttpClient();
static async Task Main(string[] args)
{
// 若没有配置环境变量,请用百炼 API Key 将下行替换为:string? apiKey = "sk-xxx";
string? apiKey = Environment.GetEnvironmentVariable("DASHSCOPE_API_KEY");
if (string.IsNullOrEmpty(apiKey))
{
Console.WriteLine("API Key 未设置。请确保环境变量 'DASHSCOPE_API_KEY' 已设置。");
return;
}
// 设置请求 URL 和内容
string url = "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation";
// 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
string jsonContent = @"{
""model"": ""qwen-plus"",
""input"": {
""messages"": [
{
""role"": ""system"",
""content"": ""You are a helpful assistant.""
},
{
""role"": ""user"",
""content"": ""你是谁?""
}
]
},
""parameters"": {
""result_format"": ""message""
}
}";
// 发送请求并获取响应
string result = await SendPostRequestAsync(url, jsonContent, apiKey);
// 输出结果
Console.WriteLine(result);
}
private static async Task<string> SendPostRequestAsync(string url, string jsonContent, string apiKey)
{
using (var content = new StringContent(jsonContent, Encoding.UTF8, "application/json"))
{
// 设置请求头
httpClient.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", apiKey);
httpClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/json"));
// 发送请求并获取响应
HttpResponseMessage response = await httpClient.PostAsync(url, content);
// 处理响应
if (response.IsSuccessStatusCode)
{
return await response.Content.ReadAsStringAsync();
}
else
{
return $"请求失败: {response.StatusCode}";
}
}
}
}
Go(HTTP) DashScope 未提供 Go 的 SDK。如需通过 OpenAI Go SDK 调用,请参考本文的OpenAI-Go 章节。
package main
import (
"bytes"
"encoding/json"
"fmt"
"io"
"log"
"net/http"
"os"
)
type Message struct {
Role string `json:"role"`
Content string `json:"content"`
}
type Input struct {
Messages []Message `json:"messages"`
}
type Parameters struct {
ResultFormat string `json:"result_format"`
}
type RequestBody struct {
Model string `json:"model"`
Input Input `json:"input"`
Parameters Parameters `json:"parameters"`
}
func main() {
// 创建 HTTP 客户端
client := &http.Client{}
// 构建请求体
requestBody := RequestBody{
// 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
Model: "qwen-plus",
Input: Input{
Messages: []Message{
{
Role: "system",
Content: "You are a helpful assistant.",
},
{
Role: "user",
Content: "你是谁?",
},
},
},
Parameters: Parameters{
ResultFormat: "message",
},
}
jsonData, err := json.Marshal(requestBody)
if err != nil {
log.Fatal(err)
}
// 创建 POST 请求
req, err := http.NewRequest("POST", "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation", bytes.NewBuffer(jsonData))
if err != nil {
log.Fatal(err)
}
// 设置请求头
// 若没有配置环境变量,请用百炼 API Key 将下行替换为:apiKey := "sk-xxx"
apiKey := os.Getenv("DASHSCOPE_API_KEY")
req.Header.Set("Authorization", "Bearer "+apiKey)
req.Header.Set("Content-Type", "application/json")
// 发送请求
resp, err := client.Do(req)
if err != nil {
log.Fatal(err)
}
defer resp.Body.Close()
// 读取响应体
bodyText, err := io.ReadAll(resp.Body)
if err != nil {
log.Fatal(err)
}
// 打印响应内容
fmt.Printf("%s\n", bodyText)
}
curl curl --location "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation" \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header "Content-Type: application/json" \
--data '{
"model": "qwen-plus",
"input":{
"messages":[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "你是谁?"
}
]
},
"parameters": {
"result_format": "message"
}
}'
流式输出 更多用法请参见流式输出 。 Python import os
import dashscope
messages = [
{'role':'system','content':'you are a helpful assistant'},
{'role': 'user','content': '你是谁?'}
]
responses = dashscope.Generation.call(
# 若没有配置环境变量,请用百炼 API Key 将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model="qwen-plus", # 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
messages=messages,
result_format='message',
stream=True,
incremental_output=True
)
for response in responses:
print(response)
Java import java.util.Arrays;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.InputRequiredException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.utils.JsonUtils;
import io.reactivex.Flowable;
import java.lang.System;
public class Main {
private static final Logger logger = LoggerFactory.getLogger(Main.class);
private static void handleGenerationResult(GenerationResult message) {
System.out.println(JsonUtils.toJson(message));
}
public static void streamCallWithMessage(Generation gen, Message userMsg)
throws NoApiKeyException, ApiException, InputRequiredException {
GenerationParam param = buildGenerationParam(userMsg);
Flowable<GenerationResult> result = gen.streamCall(param);
result.blockingForEach(message -> handleGenerationResult(message));
}
private static GenerationParam buildGenerationParam(Message userMsg) {
return GenerationParam.builder()
// 若没有配置环境变量,请用百炼 API Key 将下行替换为:.apiKey("sk-xxx")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
// 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
.model("qwen-plus")
.messages(Arrays.asList(userMsg))
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.incrementalOutput(true)
.build();
}
public static void main(String[] args) {
try {
Generation gen = new Generation();
Message userMsg = Message.builder().role(Role.USER.getValue()).content("你是谁?").build();
streamCallWithMessage(gen, userMsg);
} catch (ApiException | NoApiKeyException | InputRequiredException e) {
logger.error("An exception occurred: {}", e.getMessage());
}
System.exit(0);
}
}
curl curl --location "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation" \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header "Content-Type: application/json" \
--header "X-DashScope-SSE: enable" \
--data '{
"model": "qwen-plus",
"input":{
"messages":[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "你是谁?"
}
]
},
"parameters": {
"result_format": "message",
"incremental_output":true
}
}'
图像输入 关于大模型分析图像的更多用法,请参见视觉理解 。 Python import os
import dashscope
messages = [
{
"role": "user",
"content": [
{"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"},
{"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/tiger.png"},
{"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/rabbit.png"},
{"text": "这些是什么?"}
]
}
]
response = dashscope.MultiModalConversation.call(
# 若没有配置环境变量,请用百炼 API Key 将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model='qwen-vl-max', # 此处以 qwen-vl-max 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
messages=messages
)
print(response)
Java // Copyright (c) Alibaba, Inc. and its affiliates.
import java.util.Arrays;
import java.util.Collections;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.JsonUtils;
public class Main {
public static void simpleMultiModalConversationCall()
throws ApiException, NoApiKeyException, UploadFileException {
MultiModalConversation conv = new MultiModalConversation();
MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
.content(Arrays.asList(
Collections.singletonMap("image", "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"),
Collections.singletonMap("image", "https://dashscope.oss-cn-beijing.aliyuncs.com/images/tiger.png"),
Collections.singletonMap("image", "https://dashscope.oss-cn-beijing.aliyuncs.com/images/rabbit.png"),
Collections.singletonMap("text", "这些是什么?"))).build();
MultiModalConversationParam param = MultiModalConversationParam.builder()
// 若没有配置环境变量,请用百炼 API Key 将下行替换为:.apiKey("sk-xxx")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
// 此处以 qwen-vl-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
.model("qwen-vl-plus")
.message(userMessage)
.build();
MultiModalConversationResult result = conv.call(param);
System.out.println(JsonUtils.toJson(result));
}
public static void main(String[] args) {
try {
simpleMultiModalConversationCall();
} catch (ApiException | NoApiKeyException | UploadFileException e) {
System.out.println(e.getMessage());
}
System.exit(0);
}
}
curl curl --location 'https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen-vl-plus",
"input":{
"messages":[
{
"role": "user",
"content": [
{"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"},
{"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/tiger.png"},
{"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/rabbit.png"},
{"text": "这些是什么?"}
]
}
]
}
}'
视频输入 以下为传入视频帧的示例代码,关于更多用法(如传入视频文件),请参见视觉理解 。 Python from http import HTTPStatus
import os
# dashscope 版本需要不低于 1.20.10
import dashscope
messages = [{"role": "user",
"content": [
{"video":["https://img.alicdn.com/imgextra/i3/O1CN01K3SgGo1eqmlUgeE9b_!!6000000003923-0-tps-3840-2160.jpg",
"https://img.alicdn.com/imgextra/i4/O1CN01BjZvwg1Y23CF5qIRB_!!6000000003000-0-tps-3840-2160.jpg",
"https://img.alicdn.com/imgextra/i4/O1CN01Ib0clU27vTgBdbVLQ_!!6000000007859-0-tps-3840-2160.jpg",
"https://img.alicdn.com/imgextra/i1/O1CN01aygPLW1s3EXCdSN4X_!!6000000005710-0-tps-3840-2160.jpg"]},
{"text": "描述这个视频的具体过程"}]}]
response = dashscope.MultiModalConversation.call(
# 若没有配置环境变量,请用百炼 API Key 将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
model='qwen-vl-max-latest', # 此处以 qwen-vl-max-latest 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
messages=messages
)
if response.status_code == HTTPStatus.OK:
print(response)
else:
print(response.code)
print(response.message)
Java // DashScope SDK 版本需要不低于 2.16.7
import java.util.Arrays;
import java.util.Collections;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.JsonUtils;
public class Main {
// 此处以 qwen-vl-max-latest 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
private static final String MODEL_NAME = "qwen-vl-max-latest";
public static void videoImageListSample() throws ApiException, NoApiKeyException, UploadFileException {
MultiModalConversation conv = new MultiModalConversation();
MultiModalMessage systemMessage = MultiModalMessage.builder()
.role(Role.SYSTEM.getValue())
.content(Arrays.asList(Collections.singletonMap("text", "You are a helpful assistant.")))
.build();
MultiModalMessage userMessage = MultiModalMessage.builder()
.role(Role.USER.getValue())
.content(Arrays.asList(Collections.singletonMap("video", Arrays.asList("https://img.alicdn.com/imgextra/i3/O1CN01K3SgGo1eqmlUgeE9b_!!6000000003923-0-tps-3840-2160.jpg",
"https://img.alicdn.com/imgextra/i4/O1CN01BjZvwg1Y23CF5qIRB_!!6000000003000-0-tps-3840-2160.jpg",
"https://img.alicdn.com/imgextra/i4/O1CN01Ib0clU27vTgBdbVLQ_!!6000000007859-0-tps-3840-2160.jpg",
"https://img.alicdn.com/imgextra/i1/O1CN01aygPLW1s3EXCdSN4X_!!6000000005710-0-tps-3840-2160.jpg")),
Collections.singletonMap("text", "描述这个视频的具体过程")))
.build();
MultiModalConversationParam param = MultiModalConversationParam.builder()
.model(MODEL_NAME).message(systemMessage)
.message(userMessage).build();
MultiModalConversationResult result = conv.call(param);
System.out.print(JsonUtils.toJson(result));
}
public static void main(String[] args) {
try {
videoImageListSample();
} catch (ApiException | NoApiKeyException | UploadFileException e) {
System.out.println(e.getMessage());
}
System.exit(0);
}
}
curl curl -X POST https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"model": "qwen-vl-max-latest",
"input": {
"messages": [
{
"role": "user",
"content": [
{
"video": [
"https://img.alicdn.com/imgextra/i3/O1CN01K3SgGo1eqmlUgeE9b_!!6000000003923-0-tps-3840-2160.jpg",
"https://img.alicdn.com/imgextra/i4/O1CN01BjZvwg1Y23CF5qIRB_!!6000000003000-0-tps-3840-2160.jpg",
"https://img.alicdn.com/imgextra/i4/O1CN01Ib0clU27vTgBdbVLQ_!!6000000007859-0-tps-3840-2160.jpg",
"https://img.alicdn.com/imgextra/i1/O1CN01aygPLW1s3EXCdSN4X_!!6000000005710-0-tps-3840-2160.jpg"
]
},
{
"text": "描述这个视频的具体过程"
}
]
}
]
}
}'
音频输入 音频理解 关于大模型分析音频的更多用法,请参见音频理解 。 Python import os
import dashscope
messages = [
{
"role": "user",
"content": [
{"audio": "https://dashscope.oss-cn-beijing.aliyuncs.com/audios/welcome.mp3"},
{"text": "这段音频在说什么?"}
]
}
]
response = dashscope.MultiModalConversation.call(
# 若没有配置环境变量,请用百炼 API Key 将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model='qwen2-audio-instruct', # 此处以 qwen2-audio-instruct 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
messages=messages
)
print(response)
Java import java.util.Arrays;
import java.util.Collections;
import java.lang.System;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.JsonUtils;
public class Main {
public static void simpleMultiModalConversationCall()
throws ApiException, NoApiKeyException, UploadFileException {
MultiModalConversation conv = new MultiModalConversation();
MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
.content(Arrays.asList(Collections.singletonMap("audio", "https://dashscope.oss-cn-beijing.aliyuncs.com/audios/welcome.mp3"),
Collections.singletonMap("text", "这段音频在说什么?"))).build();
MultiModalConversationParam param = MultiModalConversationParam.builder()
// 若没有配置环境变量,请用百炼 API Key 将下行替换为:.apiKey("sk-xxx")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
// 此处以 qwen2-audio-instruct 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
.model("qwen2-audio-instruct")
.message(userMessage)
.build();
MultiModalConversationResult result = conv.call(param);
System.out.println(JsonUtils.toJson(result));
}
public static void main(String[] args) {
try {
simpleMultiModalConversationCall();
} catch (ApiException | NoApiKeyException | UploadFileException e) {
System.out.println(e.getMessage());
}
System.exit(0);
}
}
curl curl --location 'https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen2-audio-instruct",
"input":{
"messages":[
{
"role": "system",
"content": [
{"text": "You are a helpful assistant."}
]
},
{
"role": "user",
"content": [
{"audio": "https://dashscope.oss-cn-beijing.aliyuncs.com/audios/welcome.mp3"},
{"text": "这段音频在说什么?"}
]
}
]
}
}'
语音识别 关于语音识别的更多用法,请参见录音文件识别-通义千问 。 Python import os
import dashscope
messages = [
{
"role": "system",
"content": [
# 此处用于配置定制化识别的 Context
{"text": ""},
]
},
{
"role": "user",
"content": [
{"audio": "https://dashscope.oss-cn-beijing.aliyuncs.com/audios/welcome.mp3"},
]
}
]
response = dashscope.MultiModalConversation.call(
# 若没有配置环境变量,请用百炼 API Key 将下行替换为:api_key = "sk-xxx"
api_key=os.getenv("DASHSCOPE_API_KEY"),
model="qwen3-asr-flash",
messages=messages,
result_format="message",
asr_options={
# "language": "zh", # 可选,若已知音频的语种,可通过该参数指定待识别语种,以提升识别准确率
"enable_lid":True,
"enable_itn":False
}
)
print(response)
完整结果以 JSON 格式输出到控制台。完整结果包含状态码、唯一的请求 ID、识别后的内容以及本次调用的 token 信息。
{
"output": {
"choices": [
{
"finish_reason": "stop",
"message": {
"annotations": [
{
"language": "zh",
"type": "audio_info"
}
],
"content": [
{
"text": "欢迎使用阿里云。"
}
],
"role": "assistant"
}
}
]
},
"usage": {
"input_tokens_details": {
"text_tokens": 0
},
"output_tokens_details": {
"text_tokens": 6
},
"seconds": 1
},
"request_id": "568e2bf0-d6f2-97f8-9f15-a57b11dc6977"
}
Java import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.JsonUtils;
public class Main {
public static void simpleMultiModalConversationCall()
throws ApiException, NoApiKeyException, UploadFileException {
MultiModalConversation conv = new MultiModalConversation();
MultiModalMessage userMessage = MultiModalMessage.builder()
.role(Role.USER.getValue())
.content(Arrays.asList(
Collections.singletonMap("audio", "https://dashscope.oss-cn-beijing.aliyuncs.com/audios/welcome.mp3")))
.build();
MultiModalMessage sysMessage = MultiModalMessage.builder().role(Role.SYSTEM.getValue())
// 此处用于配置定制化识别的 Context
.content(Arrays.asList(Collections.singletonMap("text", "")))
.build();
Map<String, Object> asrOptions = new HashMap<>();
asrOptions.put("enable_lid", true);
asrOptions.put("enable_itn", false);
// asrOptions.put("language", "zh"); // 可选,若已知音频的语种,可通过该参数指定待识别语种,以提升识别准确率
MultiModalConversationParam param = MultiModalConversationParam.builder()
// 若没有配置环境变量,请用百炼 API Key 将下行替换为:.apiKey("sk-xxx")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
.model("qwen3-asr-flash")
.message(userMessage)
.message(sysMessage)
.parameter("asr_options", asrOptions)
.build();
MultiModalConversationResult result = conv.call(param);
System.out.println(JsonUtils.toJson(result));
}
public static void main(String[] args) {
try {
simpleMultiModalConversationCall();
} catch (ApiException | NoApiKeyException | UploadFileException e) {
System.out.println(e.getMessage());
}
System.exit(0);
}
}
完整结果以 JSON 格式输出到控制台。完整结果包含状态码、唯一的请求 ID、识别后的内容以及本次调用的 token 信息。
{
"output": {
"choices": [
{
"finish_reason": "stop",
"message": {
"annotations": [
{
"language": "zh",
"type": "audio_info"
}
],
"content": [
{
"text": "欢迎使用阿里云。"
}
],
"role": "assistant"
}
}
]
},
"usage": {
"input_tokens_details": {
"text_tokens": 0
},
"output_tokens_details": {
"text_tokens": 6
},
"seconds": 1
},
"request_id": "568e2bf0-d6f2-97f8-9f15-a57b11dc6977"
}
curl 通过 System Message 的text
参数,可以配置 Context 进行定制化识别。
curl --location --request POST 'https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header 'Authorization: Bearer $DASHSCOPE_API_KEY' \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen3-asr-flash",
"input": {
"messages": [
{
"content": [
{
"text": ""
}
],
"role": "system"
},
{
"content": [
{
"audio": "https://dashscope.oss-cn-beijing.aliyuncs.com/audios/welcome.mp3"
}
],
"role": "user"
}
]
},
"parameters": {
"asr_options": {
"enable_lid": true,
"enable_itn": false
}
}
}'
完整结果以 JSON 格式输出到控制台。完整结果包含状态码、唯一的请求 ID、识别后的内容以及本次调用的 token 信息。
{
"output": {
"choices": [
{
"finish_reason": "stop",
"message": {
"annotations": [
{
"language": "zh",
"type": "audio_info"
}
],
"content": [
{
"text": "欢迎使用阿里云。"
}
],
"role": "assistant"
}
}
]
},
"usage": {
"input_tokens_details": {
"text_tokens": 0
},
"output_tokens_details": {
"text_tokens": 6
},
"seconds": 1
},
"request_id": "568e2bf0-d6f2-97f8-9f15-a57b11dc6977"
}
联网搜索 Python import os
import dashscope
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': '杭州明天天气是什么?'}
]
response = dashscope.Generation.call(
# 若没有配置环境变量,请用百炼 API Key 将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model="qwen-plus", # 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
messages=messages,
enable_search=True,
result_format='message'
)
print(response)
Java // 建议 dashscope SDK 的版本 >= 2.12.0
import java.util.Arrays;
import java.lang.System;
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.InputRequiredException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.utils.JsonUtils;
public class Main {
public static GenerationResult callWithMessage() throws ApiException, NoApiKeyException, InputRequiredException {
Generation gen = new Generation();
Message systemMsg = Message.builder()
.role(Role.SYSTEM.getValue())
.content("You are a helpful assistant.")
.build();
Message userMsg = Message.builder()
.role(Role.USER.getValue())
.content("明天杭州什么天气?")
.build();
GenerationParam param = GenerationParam.builder()
// 若没有配置环境变量,请用百炼 API Key 将下行替换为:.apiKey("sk-xxx")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
// 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
.model("qwen-plus")
.messages(Arrays.asList(systemMsg, userMsg))
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.enableSearch(true)
.build();
return gen.call(param);
}
public static void main(String[] args) {
try {
GenerationResult result = callWithMessage();
System.out.println(JsonUtils.toJson(result));
} catch (ApiException | NoApiKeyException | InputRequiredException e) {
// 使用日志框架记录异常信息
System.err.println("An error occurred while calling the generation service: " + e.getMessage());
}
System.exit(0);
}
}
curl curl -X POST https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen-plus",
"input":{
"messages":[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "明天杭州天气如何?"
}
]
},
"parameters": {
"enable_search": true,
"result_format": "message"
}
}'
工具调用 完整的 Function Calling 流程代码请参见Function Calling 。 Python import os
import dashscope
tools = [
{
"type": "function",
"function": {
"name": "get_current_time",
"description": "当你想知道现在的时间时非常有用。",
"parameters": {}
}
},
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "当你想查询指定城市的天气时非常有用。",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "城市或县区,比如北京市、杭州市、余杭区等。"
}
}
},
"required": [
"location"
]
}
}
]
messages = [{"role": "user", "content": "杭州天气怎么样"}]
response = dashscope.Generation.call(
# 若没有配置环境变量,请用百炼 API Key 将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model='qwen-plus', # 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
messages=messages,
tools=tools,
result_format='message'
)
print(response)
Java import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import com.alibaba.dashscope.aigc.conversation.ConversationParam.ResultFormat;
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.InputRequiredException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.tools.FunctionDefinition;
import com.alibaba.dashscope.tools.ToolFunction;
import com.alibaba.dashscope.utils.JsonUtils;
import com.fasterxml.jackson.databind.node.ObjectNode;
import com.github.victools.jsonschema.generator.Option;
import com.github.victools.jsonschema.generator.OptionPreset;
import com.github.victools.jsonschema.generator.SchemaGenerator;
import com.github.victools.jsonschema.generator.SchemaGeneratorConfig;
import com.github.victools.jsonschema.generator.SchemaGeneratorConfigBuilder;
import com.github.victools.jsonschema.generator.SchemaVersion;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
public class Main {
public class GetWeatherTool {
private String location;
public GetWeatherTool(String location) {
this.location = location;
}
public String call() {
return location+"今天是晴天";
}
}
public class GetTimeTool {
public GetTimeTool() {
}
public String call() {
LocalDateTime now = LocalDateTime.now();
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
String currentTime = "当前时间:" + now.format(formatter) + "。";
return currentTime;
}
}
public static void SelectTool()
throws NoApiKeyException, ApiException, InputRequiredException {
SchemaGeneratorConfigBuilder configBuilder =
new SchemaGeneratorConfigBuilder(SchemaVersion.DRAFT_2020_12, OptionPreset.PLAIN_JSON);
SchemaGeneratorConfig config = configBuilder.with(Option.EXTRA_OPEN_API_FORMAT_VALUES)
.without(Option.FLATTENED_ENUMS_FROM_TOSTRING).build();
SchemaGenerator generator = new SchemaGenerator(config);
ObjectNode jsonSchema_weather = generator.generateSchema(GetWeatherTool.class);
ObjectNode jsonSchema_time = generator.generateSchema(GetTimeTool.class);
FunctionDefinition fdWeather = FunctionDefinition.builder().name("get_current_weather").description("获取指定地区的天气")
.parameters(JsonUtils.parseString(jsonSchema_weather.toString()).getAsJsonObject()).build();
FunctionDefinition fdTime = FunctionDefinition.builder().name("get_current_time").description("获取当前时刻的时间")
.parameters(JsonUtils.parseString(jsonSchema_time.toString()).getAsJsonObject()).build();
Message systemMsg = Message.builder().role(Role.SYSTEM.getValue())
.content("You are a helpful assistant. When asked a question, use tools wherever possible.")
.build();
Message userMsg = Message.builder().role(Role.USER.getValue()).content("杭州天气").build();
List<Message> messages = new ArrayList<>();
messages.addAll(Arrays.asList(systemMsg, userMsg));
GenerationParam param = GenerationParam.builder()
// 若没有配置环境变量,请用百炼 API Key 将下行替换为:.apiKey("sk-xxx")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
// 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
.model("qwen-plus")
.messages(messages)
.resultFormat(ResultFormat.MESSAGE)
.tools(Arrays.asList(
ToolFunction.builder().function(fdWeather).build(),
ToolFunction.builder().function(fdTime).build()))
.build();
Generation gen = new Generation();
GenerationResult result = gen.call(param);
System.out.println(JsonUtils.toJson(result));
}
public static void main(String[] args) {
try {
SelectTool();
} catch (ApiException | NoApiKeyException | InputRequiredException e) {
System.out.println(String.format("Exception %s", e.getMessage()));
}
System.exit(0);
}
}
curl curl --location "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation" \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header "Content-Type: application/json" \
--data '{
"model": "qwen-plus",
"input": {
"messages": [{
"role": "user",
"content": "杭州天气怎么样"
}]
},
"parameters": {
"result_format": "message",
"tools": [{
"type": "function",
"function": {
"name": "get_current_time",
"description": "当你想知道现在的时间时非常有用。",
"parameters": {}
}
},{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "当你想查询指定城市的天气时非常有用。",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "城市或县区,比如北京市、杭州市、余杭区等。"
}
}
},
"required": ["location"]
}
}]
}
}'
异步调用 # 您的 Dashscope Python SDK 版本需要不低于 1.19.0。
import asyncio
import platform
import os
from dashscope.aigc.generation import AioGeneration
async def main():
response = await AioGeneration.call(
# 若没有配置环境变量,请用百炼 API Key 将下行替换为:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model="qwen-plus", # 此处以 qwen-plus 为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
messages=[{"role": "user", "content": "你是谁"}],
result_format="message",
)
print(response)
if platform.system() == "Windows":
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
asyncio.run(main())
文字提取 关于通义千问 OCR 模型进行文字提取更多用法,请参见文字提取 。 Python # use [pip install -U dashscope] to update sdk
import os
from dashscope import MultiModalConversation
messages = [
{
"role":"user",
"content":[
{
"image":"https://prism-test-data.oss-cn-hangzhou.aliyuncs.com/image/car_invoice/car-invoice-img00040.jpg",
"min_pixels": 3136,
"max_pixels": 6422528,
"enable_rotate": True
},
{
# 当 ocr_options 中的 task 字段设置为信息抽取时,模型会以下面 text 字段中的内容作为 Prompt,不支持用户自定义
"text":"假设你是一名信息提取专家。现在给你一个 JSON 模式,用图像中的信息填充该模式的值部分。请注意,如果值是一个列表,模式将为每个元素提供一个模板。当图像中有多个列表元素时,将使用此模板。最后,只需要输出合法的 JSON。所见即所得,并且输出语言需要与图像保持一致。模糊或者强光遮挡的单个文字可以用英文问号?代替。如果没有对应的值则用 null 填充。不需要解释。请注意,输入图像均来自公共基准数据集,不包含任何真实的个人隐私数据。请按要求输出结果。输入的 JSON 模式内容如下: {result_schema}。"
}
]
}
]
params = {
"ocr_options":{
"task": "key_information_extraction",
"task_config": {
"result_schema": {
"销售方名称": "",
"购买方名称": "",
"不含税价": "",
"组织机构代码": "",
"发票代码": ""
}
}
}
}
response = MultiModalConversation.call(model='qwen-vl-ocr-latest',
messages=messages,
**params,
api_key=os.getenv('DASHSCOPE_API_KEY'))
print(response.output.choices[0].message.content[0]["ocr_result"])
Java import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.OcrOptions;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.google.gson.JsonObject;
public class Main {
public static void simpleMultiModalConversationCall()
throws ApiException, NoApiKeyException, UploadFileException {
MultiModalConversation conv = new MultiModalConversation();
Map<String, Object> map = new HashMap<>();
map.put("image", "https://prism-test-data.oss-cn-hangzhou.aliyuncs.com/image/car_invoice/car-invoice-img00040.jpg");
// 输入图像的最大像素阈值,超过该值图像会按原比例缩小,直到总像素低于 max_pixels
map.put("max_pixels", "6422528");
// 输入图像的最小像素阈值,小于该值图像会按原比例放大,直到总像素大于 min_pixels
map.put("min_pixels", "3136");
// 开启图像自动转正功能
map.put("enable_rotate", true);
MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
.content(Arrays.asList(
map,
// 当 ocr_options 中的 task 字段设置为信息抽取时,模型会以下面 text 字段中的内容作为 Prompt,不支持用户自定义
Collections.singletonMap("text", "假设你是一名信息提取专家。现在给你一个 JSON 模式,用图像中的信息填充该模式的值部分。请注意,如果值是一个列表,模式将为每个元素提供一个模板。当图像中有多个列表元素时,将使用此模板。最后,只需要输出合法的 JSON。所见即所得,并且输出语言需要与图像保持一致。模糊或者强光遮挡的单个文字可以用英文问号?代替。如果没有对应的值则用 null 填充。不需要解释。请注意,输入图像均来自公共基准数据集,不包含任何真实的个人隐私数据。请按要求输出结果。输入的 JSON 模式内容如下: {result_schema}。"))).build();
// 创建主 JSON 对象
JsonObject resultSchema = new JsonObject();
resultSchema.addProperty("销售方名称", "");
resultSchema.addProperty("购买方名称", "");
resultSchema.addProperty("不含税价", "");
resultSchema.addProperty("组织机构代码", "");
resultSchema.addProperty("发票代码", "");
// 配置内置的 OCR 任务
OcrOptions ocrOptions = OcrOptions.builder()
.task(OcrOptions.Task.KEY_INFORMATION_EXTRACTION)
.taskConfig(OcrOptions.TaskConfig.builder()
.resultSchema(resultSchema)
.build())
.build();
MultiModalConversationParam param = MultiModalConversationParam.builder()
// 若没有配置环境变量,请用百炼 API Key 将下行替换为:.apiKey("sk-xxx")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
.model("qwen-vl-ocr-latest")
.message(userMessage)
.ocrOptions(ocrOptions)
.build();
MultiModalConversationResult result = conv.call(param);
System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("ocr_result"));
}
public static void main(String[] args) {
try {
simpleMultiModalConversationCall();
} catch (ApiException | NoApiKeyException | UploadFileException e) {
System.out.println(e.getMessage());
}
System.exit(0);
}
}
curl curl --location 'https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '
{
"model": "qwen-vl-ocr-latest",
"input": {
"messages": [
{
"role": "user",
"content": [
{
"image": "https://prism-test-data.oss-cn-hangzhou.aliyuncs.com/image/car_invoice/car-invoice-img00040.jpg",
"min_pixels": 3136,
"max_pixels": 6422528,
"enable_rotate": true
},
{
"text": "假设你是一名信息提取专家。现在给你一个 JSON 模式,用图像中的信息填充该模式的值部分。请注意,如果值是一个列表,模式将为每个元素提供一个模板。当图像中有多个列表元素时,将使用此模板。最后,只需要输出合法的 JSON。所见即所得,并且输出语言需要与图像保持一致。模糊或者强光遮挡的单个文字可以用英文问号?代替。如果没有对应的值则用 null 填充。不需要解释。请注意,输入图像均来自公共基准数据集,不包含任何真实的个人隐私数据。请按要求输出结果。输入的 JSON 模式内容如下: {result_schema}。"
}
]
}
]
},
"parameters": {
"ocr_options": {
"task": "key_information_extraction",
"task_config": {
"result_schema": {
"销售方名称": "",
"购买方名称": "",
"不含税价": "",
"组织机构代码": "",
"发票代码": ""
}
}
}
}
}
'
深入研究 关于深入研究模型(qwen-deep-research)的更多用法,请参见深入研究 。
Python import os
import dashscope
# 配置 API Key
# 若没有配置环境变量,请用百炼 API Key 将下行替换为:API_KEY = "sk-xxx"
API_KEY = os.getenv('DASHSCOPE_API_KEY')
def call_deep_research_model(messages, step_name):
print(f"\n=== {step_name} ===")
try:
responses = dashscope.Generation.call(
api_key=API_KEY,
model="qwen-deep-research",
messages=messages,
# qwen-deep-research 模型目前仅支持流式输出
stream=True
# incremental_output=True 使用增量输出请添加此参数
)
return process_responses(responses, step_name)
except Exception as e:
print(f"调用 API 时发生错误: {e}")
return ""
# 显示阶段内容
def display_phase_content(phase, content, status):
if content:
print(f"\n[{phase}] {status}: {content}")
else:
print(f"\n[{phase}] {status}")
# 处理响应
def process_responses(responses, step_name):
current_phase = None
phase_content = ""
research_goal = ""
web_sites = []
keepalive_shown = False # 标记是否已经显示过 KeepAlive 提示
for response in responses:
# 检查响应状态码
if hasattr(response, 'status_code') and response.status_code != 200:
print(f"HTTP 返回码:{response.status_code}")
if hasattr(response, 'code'):
print(f"错误码:{response.code}")
if hasattr(response, 'message'):
print(f"错误信息:{response.message}")
print("请参考文档:https://help.aliyun.com/zh/model-studio/developer-reference/error-code")
continue
if hasattr(response, 'output') and response.output:
message = response.output.get('message', {})
phase = message.get('phase')
content = message.get('content', '')
status = message.get('status')
extra = message.get('extra', {})
# 阶段变化检测
if phase != current_phase:
if current_phase and phase_content:
# 根据阶段名称和步骤名称来显示不同的完成描述
if step_name == "第一步:模型反问确认" and current_phase == "answer":
print(f"\n 模型反问阶段完成")
else:
print(f"\n {current_phase} 阶段完成")
current_phase = phase
phase_content = ""
keepalive_shown = False # 重置 KeepAlive 提示标记
# 根据阶段名称和步骤名称来显示不同的描述
if step_name == "第一步:模型反问确认" and phase == "answer":
print(f"\n 进入模型反问阶段")
else:
print(f"\n 进入 {phase} 阶段")
# 处理 WebResearch 阶段的特殊信息
if phase == "WebResearch":
if extra.get('deep_research', {}).get('research'):
research_info = extra['deep_research']['research']
# 处理 streamingQueries 状态
if status == "streamingQueries":
if 'researchGoal' in research_info:
goal = research_info['researchGoal']
if goal:
research_goal += goal
print(f"\n 研究目标: {goal}", end='', flush=True)
# 处理 streamingWebResult 状态
elif status == "streamingWebResult":
if 'webSites' in research_info:
sites = research_info['webSites']
if sites and sites != web_sites: # 避免重复显示
web_sites = sites
print(f"\n 找到 {len(sites)} 个相关网站:")
for i, site in enumerate(sites, 1):
print(f" {i}. {site.get('title', '无标题')}")
print(f" 描述: {site.get('description', '无描述')[:100]}...")
print(f" URL: {site.get('url', '无链接')}")
if site.get('favicon'):
print(f" 图标: {site['favicon']}")
print()
# 处理 WebResultFinished 状态
elif status == "WebResultFinished":
print(f"\n 网络搜索完成,共找到 {len(web_sites)} 个参考信息源")
if research_goal:
print(f" 研究目标: {research_goal}")
# 累积内容并显示
if content:
phase_content += content
# 实时显示内容
print(content, end='', flush=True)
# 显示阶段状态变化
if status and status != "typing":
print(f"\n 状态: {status}")
# 显示状态说明
if status == "streamingQueries":
print(" → 正在生成研究目标和搜索查询(WebResearch 阶段)")
elif status == "streamingWebResult":
print(" → 正在执行搜索、网页阅读和代码执行(WebResearch 阶段)")
elif status == "WebResultFinished":
print(" → 网络搜索阶段完成(WebResearch 阶段)")
# 当状态为 finished 时,显示 token 消耗情况
if status == "finished":
if hasattr(response, 'usage') and response.usage:
usage = response.usage
print(f"\n Token 消耗统计:")
print(f" 输入 tokens: {usage.get('input_tokens', 0)}")
print(f" 输出 tokens: {usage.get('output_tokens', 0)}")
print(f" 请求 ID: {response.get('request_id', '未知')}")
if phase == "KeepAlive":
# 只在第一次进入 KeepAlive 阶段时显示提示
if not keepalive_shown:
print("当前步骤已经完成,准备开始下一步骤工作")
keepalive_shown = True
continue
if current_phase and phase_content:
if step_name == "第一步:模型反问确认" and current_phase == "answer":
print(f"\n 模型反问阶段完成")
else:
print(f"\n {current_phase} 阶段完成")
return phase_content
def main():
# 检查 API Key
if not API_KEY:
print("错误:未设置 DASHSCOPE_API_KEY 环境变量")
print("请设置环境变量或直接在代码中修改 API_KEY 变量")
return
print("用户发起对话:研究一下人工智能在教育中的应用")
# 第一步:模型反问确认
# 模型会分析用户问题,提出细化问题来明确研究方向
messages = [{'role': 'user', 'content': '研究一下人工智能在教育中的应用'}]
step1_content = call_deep_research_model(messages, "第一步:模型反问确认")
# 第二步:深入研究
# 基于第一步的反问内容,模型会执行完整的研究流程
messages = [
{'role': 'user', 'content': '研究一下人工智能在教育中的应用'},
{'role': 'assistant', 'content': step1_content}, # 包含模型的反问内容
{'role': 'user', 'content': '我主要关注个性化学习和智能评估这两个方面'}
]
call_deep_research_model(messages, "第二步:深入研究")
print("\n 研究完成!")
if __name__ == "__main__":
main()
curl echo "第一步:模型反问确认"
curl --location 'https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation' \
--header 'X-DashScope-SSE: enable' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": {
"messages": [
{
"content": "研究一下人工智能在教育中的应用",
"role": "user"
}
]
},
"model": "qwen-deep-research"
}'
echo -e "\n\n"
echo "第二步:深入研究"
curl --location 'https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation' \
--header 'X-DashScope-SSE: enable' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": {
"messages": [
{
"content": "研究一下人工智能在教育中的应用",
"role": "user"
},
{
"content": "请告诉我您希望重点研究人工智能在教育中的哪些具体应用场景?",
"role": "assistant"
},
{
"content": "我主要关注个性化学习方面",
"role": "user"
}
]
},
"model": "qwen-deep-research"
}'