描述:进行文本切分和切块向量化
请求语法
POST /v3/openapi/apps/{app_group_identity}/actions/knowledge-split
注:app_group_identity表示应用名称。
请求参数
SplitDoc | |||
参数名 | 参数类型 | 描述 | 备注 |
title | String | 数据标题 | 选填 |
content | String | 处理数据内容 | 必填 |
use_embedding | Boolean | 是否需要向量化:
| 不填则为false |
model | String | 需要使用的向量化模型 | 无 |
请求体示例
{
"title":"测试标题",
"content":"测试文本",
"use_embedding":true,
}
返回参数
响应名 | 响应类型 | 描述 |
chunks | List<ChunkContext> | 切片后的文本数据对象 |
ChunkContext | ||
响应名 | 响应类型 | 描述 |
chunk_id | String | 切片id |
chunk | String | 切片后的文本数据 |
embedding | String | 向量化后的向量 |
type | String | 文本类型: 文本类型:text,图片类型:image |
img_url | String | 若是图片类型数据,需要有图片的url |
响应体示例
{
"request_id":"111111111",
"status":"OK";
"errors":[],
"result":[
{
"chunk_id":"1",
"chunk":"测试切片文本1",
"embedding":"-0.010441,-0.002826,-0.022911,0.000847,0.025610,0.019213,-0.019912,0.008210,0.011974,-0.010120,-0.003866,-0.008091,-0.006889,-0.034774,...-0.012572,0.009668,0.010963,-0.005273,-0.005072,-0.002190,-0.001554,-0.000058",
"type":"text"
},
{
"chunk_id":"2",
"chunk":"测试切片文本2",
"embedding":"-0.010441,-0.002826,-0.022911,0.000847,0.025610,0.019213,-0.019912,0.008210,0.011974,-0.010120,-0.003866,-0.008091,-0.006889,-0.034774,...-0.012572,0.009668,0.010963,-0.005273,-0.005072,-0.002190,-0.001554,-0.000058",
"type":"image",
"img_url":"http://127.0.0.1"
},
{
"chunk_id":"3",
"chunk":"测试切片文本3",
"type":"text"
}
]
}
说明
文本切片向量化后的向量维度为1536维。
文档内容是否对您有帮助?