在实际开发过程中,通常需要分析查询语句或表结构来分析性能瓶颈,MaxCompute SQL为您提供explain
语句实现此功能。本文为您介绍explain
的功能、命令格式及使用示例。
功能介绍
EXPLAIN语句可以显示MaxCompute SQL对应的DML语句执行计划(执行SQL语义的程序)的结构,帮助您了解SQL语句的处理过程,为优化SQL语句提供帮助。一个查询语句作业会对应多个Job,一个Job对应多个Task。
如果查询语句足够复杂,EXPLAIN的结果较多,超过4 MB则会触发API的限制,无法得到完整的EXPLAIN结果。此时您可以拆分查询语句,对各部分分别执行EXPLAIN语句,以了解Job的结构。
命令格式
EXPLAIN <dml query>;
dml query:必填。SELECT
语句,更多信息请参见SELECT语法。
返回说明
EXPLAIN
的执行结果包含如下信息:
Job间的依赖关系
例如
job0 is root job
。如果查询只需要一个Job(job0
),只会显示一行信息。Task间的依赖关系
In Job job0: root Tasks: M1, M2 J3_1_2_Stg1 depends on: M1, M2
job0
包含三个Task,M1
、M2
和J3_1_2_Stg1
。系统会先执行M1
和M2
两个Task,执行完成后,再执行J3_1_2_Stg1
。Task的命名规则如下:
在MaxCompute中,共有四种Task类型:MapTask、ReduceTask、JoinTask和LocalWork。Task名称的第一个字母表示了当前Task的类型,例如
M2Stg1
就是一个MapTask。紧跟着第一个字母后的数字,代表了当前Task的ID。这个ID在当前查询对应的所有Task中是唯一的。
用下划线(_)分隔的数字代表当前Task的直接依赖,例如
J3_1_2_Stg1
表示当前Task ID为3,依赖ID为1(M1)和ID为2(M2)的两个Task。
Task中所有Operator的依赖结构。
Operator串描述了一个Task的执行语义。结构示例如下:
In Task M2: Data source: mf_mc_bj.sale_detail_jt/sale_date=2013/region=china # "Data source"描述了当前Task的输入内容。 TS: mf_mc_bj.sale_detail_jt/sale_date=2013/region=china # TableScanOperator FIL: ISNOTNULL(customer_id) # FilterOperator RS: order: + # ReduceSinkOperator nullDirection: * optimizeOrderBy: False valueDestLimit: 0 dist: HASH keys: customer_id values: customer_id (string) total_price (double) partitions: customer_id In Task J3_1_2: JOIN: # JoinOperator StreamLineRead1 INNERJOIN StreamLineRead2 keys: 0:customer_id 1:customer_id AGGREGATE: group by:customer_id # GroupByOperator UDAF: SUM(total_price) (__agg_0_sum)[Complete],SUM(total_price) (__agg_1_sum)[Complete] RS: order: + nullDirection: * optimizeOrderBy: True valueDestLimit: 10 dist: HASH keys: customer_id values: customer_id (string) __agg_0 (double) __agg_1 (double) partitions: In Task R4_3: SEL: customer_id,__agg_0,__agg_1 # SelectOperator LIM:limit 10 # LimitOperator FS: output: Screen # FileSinkOperator schema: customer_id (string) AS ashop __agg_0 (double) AS ap __agg_1 (double) AS bp
各Operator的含义如下:
TableScanOperator(TS):描述查询语句中的
FROM
语句块的逻辑。EXPLAIN
结果中会显示输入表的名称(Alias)。SelectOperator(SEL):描述查询语句中的SELECT语句块的逻辑。
EXPLAIN
结果中会显示向下一个Operator传递的列,多个列由逗号分隔。如果是列的引用,则显示为
<alias>.<column_name>
。如果是表达式的结果,则显示为函数形式,例如
func1(arg1_1, arg1_2, func2(arg2_1, arg2_2))
。如果是常量,则直接显示常量值。
FilterOperator(FIL):描述查询语句中的
WHERE
语句块的逻辑。EXPLAIN
结果中会显示一个WHERE
条件表达式,形式类似SelectOperator的显示规则。JoinOperator(JOIN):描述查询语句中的
JOIN
语句块的逻辑。EXPLAIN
结果中会显示哪些表以哪种方式JOIN在一起。GroupByOperator(例如AGGREGATE):描述聚合操作的逻辑。如果查询中使用了聚合函数,就会出现该结构,
EXPLAIN
结果中会显示聚合函数的内容。ReduceSinkOperator(RS):描述Task间数据分发操作的逻辑。如果当前Task的结果会传递给另一个Task,则必然需要在当前Task的最后,使用ReduceSinkOperator执行数据分发操作。
EXPLAIN
的结果中会显示输出结果的排序方式、分发的Key、Value以及用来求Hash值的列。FileSinkOperator(FS):描述最终数据的存储操作。如果查询中有
INSERT
语句块,EXPLAIN
结果中会显示目标表名称。LimitOperator(LIM):描述查询语句中的
LIMIT
语句块的逻辑。EXPLAIN
结果中会显示LIMIT
数。MapjoinOperator(HASHJOIN):类似JoinOperator,描述大表的
JOIN
操作。
示例数据
为便于理解,本文为您提供源数据,基于源数据提供相关示例。创建表sale_detail和sale_detail_jt,并添加数据,命令示例如下:
--创建分区表sale_detail和sale_detail_jt。
CREATE TABLE if NOT EXISTS sale_detail
(
shop_name STRING,
customer_id STRING,
total_price DOUBLE
)
PARTITIONED BY (sale_date STRING, region STRING);
CREATE TABLE if NOT EXISTS sale_detail_jt
(
shop_name STRING,
customer_id STRING,
total_price DOUBLE
)
PARTITIONED BY (sale_date STRING, region STRING);
--向源表增加分区。
ALTER TABLE sale_detail ADD PARTITION (sale_date='2013', region='china') PARTITION (sale_date='2014', region='shanghai');
ALTER TABLE sale_detail_jt ADD PARTITION (sale_date='2013', region='china');
--向源表追加数据。
INSERT INTO sale_detail PARTITION (sale_date='2013', region='china') VALUES ('s1','c1',100.1),('s2','c2',100.2),('s3','c3',100.3);
INSERT INTO sale_detail PARTITION (sale_date='2014', region='shanghai') VALUES ('null','c5',null),('s6','c6',100.4),('s7','c7',100.5);
INSERT INTO sale_detail_jt PARTITION (sale_date='2013', region='china') VALUES ('s1','c1',100.1),('s2','c2',100.2),('s5','c2',100.2);
--查询表sale_detail和sale_detail_jt中的数据,命令示例如下:
SET odps.sql.allow.fullscan=true;
SELECT * FROM sale_detail;
--返回结果
+------------+-------------+-------------+------------+------------+
| shop_name | customer_id | total_price | sale_date | region |
+------------+-------------+-------------+------------+------------+
| s1 | c1 | 100.1 | 2013 | china |
| s2 | c2 | 100.2 | 2013 | china |
| s3 | c3 | 100.3 | 2013 | china |
| null | c5 | NULL | 2014 | shanghai |
| s6 | c6 | 100.4 | 2014 | shanghai |
| s7 | c7 | 100.5 | 2014 | shanghai |
+------------+-------------+-------------+------------+------------+
SET odps.sql.allow.fullscan=true;
SELECT * FROM sale_detail_jt;
-- 返回结果
+------------+-------------+-------------+------------+------------+
| shop_name | customer_id | total_price | sale_date | region |
+------------+-------------+-------------+------------+------------+
| s1 | c1 | 100.1 | 2013 | china |
| s2 | c2 | 100.2 | 2013 | china |
| s5 | c2 | 100.2 | 2013 | china |
+------------+-------------+-------------+------------+------------+
--创建做关联的表。
SET odps.sql.allow.fullscan=true;
CREATE TABLE shop AS SELECT shop_name, customer_id, total_price FROM sale_detail;
使用示例
下述示例均基于示例数据执行。
示例1
查询语句:
SELECT a.customer_id AS ashop, SUM(a.total_price) AS ap,COUNT(b.total_price) AS bp FROM (SELECT * FROM sale_detail_jt WHERE sale_date='2013' AND region='china') a INNER JOIN (SELECT * FROM sale_detail WHERE sale_date='2013' AND region='china') b ON a.customer_id=b.customer_id GROUP BY a.customer_id ORDER BY a.customer_id LIMIT 10;
获取查询语句语义,命令如下:
EXPLAIN SELECT a.customer_id AS ashop, SUM(a.total_price) AS ap,COUNT(b.total_price) AS bp FROM (SELECT * FROM sale_detail_jt WHERE sale_date='2013' AND region='china') a INNER JOIN (SELECT * FROM sale_detail WHERE sale_date='2013' AND region='china') b ON a.customer_id=b.customer_id GROUP BY a.customer_id ORDER BY a.customer_id LIMIT 10;
返回结果如下:
job0 is root job In Job job0: root Tasks: M1 M2_1 depends on: M1 R3_2 depends on: M2_1 R4_3 depends on: R3_2 In Task M1: Data source: doc_****.default.sale_detail/sale_date=2013/region=china TS: doc_****.default.sale_detail/sale_date=2013/region=china Statistics: Num rows: 3.0, Data size: 324.0 FIL: ISNOTNULL(customer_id) Statistics: Num rows: 2.7, Data size: 291.6 RS: valueDestLimit: 0 dist: BROADCAST keys: values: customer_id (string) total_price (double) partitions: Statistics: Num rows: 2.7, Data size: 291.6 In Task M2_1: Data source: doc_****.default.sale_detail_jt/sale_date=2013/region=china TS: doc_****.default.sale_detail_jt/sale_date=2013/region=china Statistics: Num rows: 3.0, Data size: 324.0 FIL: ISNOTNULL(customer_id) Statistics: Num rows: 2.7, Data size: 291.6 HASHJOIN: Filter1 INNERJOIN StreamLineRead1 keys: 0:customer_id 1:customer_id non-equals: 0: 1: bigTable: Filter1 Statistics: Num rows: 3.6450000000000005, Data size: 787.32 RS: order: + nullDirection: * optimizeOrderBy: False valueDestLimit: 0 dist: HASH keys: customer_id values: customer_id (string) total_price (double) total_price (double) partitions: customer_id Statistics: Num rows: 3.6450000000000005, Data size: 422.82000000000005 In Task R3_2: AGGREGATE: group by:customer_id UDAF: SUM(total_price) (__agg_0_sum)[Complete],COUNT(total_price) (__agg_1_count)[Complete] Statistics: Num rows: 1.0, Data size: 116.0 RS: order: + nullDirection: * optimizeOrderBy: True valueDestLimit: 10 dist: HASH keys: customer_id values: customer_id (string) __agg_0 (double) __agg_1 (bigint) partitions: Statistics: Num rows: 1.0, Data size: 116.0 In Task R4_3: SEL: customer_id,__agg_0,__agg_1 Statistics: Num rows: 1.0, Data size: 116.0 SEL: customer_id ashop, __agg_0 ap, __agg_1 bp, customer_id Statistics: Num rows: 1.0, Data size: 216.0 FS: output: Screen schema: ashop (string) ap (double) bp (bigint) Statistics: Num rows: 1.0, Data size: 116.0 OK
示例2
查询语句:
SELECT /*+ mapjoin(a) */ a.customer_id AS ashop, SUM(a.total_price) AS ap,COUNT(b.total_price) AS bp FROM (SELECT * FROM sale_detail_jt WHERE sale_date='2013' AND region='china') a INNER JOIN (SELECT * FROM sale_detail WHERE sale_date='2013' AND region='china') b ON a.total_price<b.total_price GROUP BY a.customer_id ORDER BY a.customer_id LIMIT 10;
获取查询语句语义:
EXPLAIN SELECT /*+ mapjoin(a) */ a.customer_id AS ashop, SUM(a.total_price) AS ap,COUNT(b.total_price) AS bp FROM (SELECT * FROM sale_detail_jt WHERE sale_date='2013' AND region='china') a INNER JOIN (SELECT * FROM sale_detail WHERE sale_date='2013' AND region='china') b ON a.total_price<b.total_price GROUP BY a.customer_id ORDER BY a.customer_id LIMIT 10;
返回结果如下:
job0 is root job In Job job0: root Tasks: M1 M2_1 depends on: M1 R3_2 depends on: M2_1 R4_3 depends on: R3_2 In Task M1: Data source: doc_****.sale_detail_jt/sale_date=2013/region=china TS: doc_****.sale_detail_jt/sale_date=2013/region=china Statistics: Num rows: 3.0, Data size: 324.0 RS: valueDestLimit: 0 dist: BROADCAST keys: values: customer_id (string) total_price (double) partitions: Statistics: Num rows: 3.0, Data size: 324.0 In Task M2_1: Data source: doc_****.sale_detail/sale_date=2013/region=china TS: doc_****.sale_detail/sale_date=2013/region=china Statistics: Num rows: 3.0, Data size: 24.0 HASHJOIN: StreamLineRead1 INNERJOIN TableScan2 keys: 0: 1: non-equals: 0: 1: bigTable: TableScan2 Statistics: Num rows: 9.0, Data size: 1044.0 FIL: LT(total_price,total_price) Statistics: Num rows: 6.75, Data size: 783.0 AGGREGATE: group by:customer_id UDAF: SUM(total_price) (__agg_0_sum)[Partial_1],COUNT(total_price) (__agg_1_count)[Partial_1] Statistics: Num rows: 2.3116438356164384, Data size: 268.1506849315069 RS: order: + nullDirection: * optimizeOrderBy: False valueDestLimit: 0 dist: HASH keys: customer_id values: customer_id (string) __agg_0_sum (double) __agg_1_count (bigint) partitions: customer_id Statistics: Num rows: 2.3116438356164384, Data size: 268.1506849315069 In Task R3_2: AGGREGATE: group by:customer_id UDAF: SUM(__agg_0_sum)[Final] __agg_0,COUNT(__agg_1_count)[Final] __agg_1 Statistics: Num rows: 1.6875, Data size: 195.75 RS: order: + nullDirection: * optimizeOrderBy: True valueDestLimit: 10 dist: HASH keys: customer_id values: customer_id (string) __agg_0 (double) __agg_1 (bigint) partitions: Statistics: Num rows: 1.6875, Data size: 195.75 In Task R4_3: SEL: customer_id,__agg_0,__agg_1 Statistics: Num rows: 1.6875, Data size: 195.75 SEL: customer_id ashop, __agg_0 ap, __agg_1 bp, customer_id Statistics: Num rows: 1.6875, Data size: 364.5 FS: output: Screen schema: ashop (string) ap (double) bp (bigint) Statistics: Num rows: 1.6875, Data size: 195.75 OK