GPU云服务器提供GPU加速计算能力,实现GPU计算资源的即开即用和弹性伸缩。作为阿里云弹性计算家族的一员,GPU云服务器结合了GPU计算力与CPU计算力,满足您在人工智能、高性能计算、专业图形图像处理等场景中的需求。
查看实例可购买地域:不同地域的实例规格可能有所不同,建议先了解各地域的可购买情况。
查看实例规格选型指导:您可以先了解业务场景下实例规格族选择,再结合本文确定具体规格。
查看实例规格指标说明:建议提前阅读以掌握相关实例规格指标的信息。
使用ECS价格计算器:您可以通过价格计器预估实例费用。
GPU虚拟化型  | GPU计算型  | 不推荐(如果以下规格售罄,建议使用前面的规格)  | 
GPU虚拟化型实例规格族sgn8ia
规格族介绍:
依托第三代神龙架构,提供稳定可预期的超高性能。同时通过芯片快速路径加速手段,完成存储、网络性能以及计算稳定性的数量级提升,可以更快地存储数据和加载模型。
已包含NVIDIA GRID vWS的软件License,可以为各类专业CAD软件提供认证过的图形加速能力,满足专业级图形设计的需求,也可以作为轻量级GPU计算型实例使用,降低小规模AI推理过程的使用成本。
适用场景:
配备高主频CPU、内存、GPU,可以处理更多并发AI推理任务,适用于图像识别、语音识别、行为识别业务。
支持RTX功能,搭配高主频CPU,提供高性能的3D图形虚拟化能力,适用于远程图形设计、云游戏等高强度图形处理业务。
使用高主频AMD Genoa处理器,主频最高可达3.75 GHz,在影视动漫制作、云游戏、机械设计等领域进行3D建模时,效果更加出色。
计算:
采用NVIDIA Lovelace架构GPU卡。
更大的GPU显存,多种不同的GPU分片。
支持vGPU、RTX、TensorRT等常用加速功能,提供多种业务支撑。
处理器:3.4 GHz~3.75 GHz的AMD Genoa高主频处理器,为3D建模配备更高算力。
存储:
I/O优化实例。
支持NVMe协议。详情参见NVMe协议概述。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘和ESSD同城冗余云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,请参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
sgn8ia包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4/IPv6地址数  | 最大支持云盘数量  | 云盘基础IOPS  | 云盘基准BPS(M)  | 
ecs.sgn8ia-m2.xlarge  | 4  | 16  | 2 GB  | 2.5  | 100万  | 4  | 4  | 15/15  | 9  | 3万  | 244  | 
ecs.sgn8ia-m4.2xlarge  | 8  | 32  | 4 GB  | 4  | 160万  | 8  | 4  | 15/15  | 9  | 4.5万  | 305  | 
ecs.sgn8ia-m8.4xlarge  | 16  | 64  | 8 GB  | 7  | 200万  | 16  | 8  | 30/30  | 17  | 6万  | 427  | 
ecs.sgn8ia-m16.8xlarge  | 32  | 128  | 16 GB  | 10  | 300万  | 32  | 8  | 30/30  | 33  | 8万  | 610  | 
ecs.sgn8ia-m24.12xlarge  | 48  | 192  | 24 GB  | 16  | 450万  | 48  | 8  | 30/30  | 33  | 12万  | 1000  | 
ecs.sgn8ia-m48.24xlarge  | 96  | 384  | 48 GB  | 32  | 900万  | 64  | 15  | 30/30  | 33  | 24万  | 2000  | 
上表中的GPU均为采用vGPU技术切分后的vGPU分片。
sgn8ia实例的内存和GPU显存均为实例独享,CPU为共享资源,超售比约为1:1.5。如对CPU算力有特殊要求,请购买直通GPU的独享型实例(例如GPU计算型实例gn7i等)。
GPU虚拟化型实例规格族sgn7i-vws(共享CPU)
规格族介绍:
依托第三代神龙架构,提供稳定可预期的超高性能。同时通过芯片快速路径加速手段,完成存储、网络性能以及计算稳定性的数量级提升,可以更快地存储数据和加载模型。
实例的CPU和网络资源采用共享模式提供,最大化利用底层资源。内存和GPU显存采用独享模式提供,为您提供数据隔离和性能保障。
说明如果您需要独享的CPU资源,请选择vgn7i-vws。
已包含NVIDIA GRID vWS的软件License,可以为各类专业CAD软件提供认证过的图形加速驱动能力,满足专业级图形设计的需求,也可以作为轻量级GPU计算型实例使用,降低小规模AI推理过程的使用成本。
适用场景:
配备高性能CPU、内存、GPU,可以处理更多并发AI推理任务,适用于图像识别、语音识别、行为识别业务。
支持RTX功能,搭配高主频CPU,提供高性能的3D图形虚拟化能力,适用于远程图形设计、云游戏等高强度图形处理业务。
使用Ice Lake处理器,在影视动漫制作、云游戏、机械设计等领域进行3D建模时,效果更加出色。
计算:
采用NVIDIA A10 GPU卡。
创新的Ampere架构。
支持vGPU、RTX、TensorRT等常用加速功能,提供多种业务支撑。
处理器:2.9 GHz主频的Intel ® Xeon ® 可扩展处理器(Ice Lake),全核睿频3.5 GHz。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘和ESSD同城冗余云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
sgn7i-vws包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 网络带宽基础/突发(Gbit/s)  | 网络收发包PPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 
ecs.sgn7i-vws-m2.xlarge  | 4  | 15.5  | NVIDIA A10 * 1/12  | 24GB * 1/12  | 1.5/5  | 50万  | 4  | 2  | 2  | 1  | 
ecs.sgn7i-vws-m4.2xlarge  | 8  | 31  | NVIDIA A10 * 1/6  | 24GB * 1/6  | 2.6/10  | 100万  | 4  | 4  | 6  | 1  | 
ecs.sgn7i-vws-m8.4xlarge  | 16  | 62  | NVIDIA A10 * 1/3  | 24GB * 1/3  | 5/20  | 200万  | 8  | 4  | 10  | 1  | 
ecs.sgn7i-vws-m2s.xlarge  | 4  | 8  | NVIDIA A10 * 1/12  | 24GB * 1/12  | 1.5/5  | 50万  | 4  | 2  | 2  | 1  | 
ecs.sgn7i-vws-m4s.2xlarge  | 8  | 16  | NVIDIA A10 * 1/6  | 24GB * 1/6  | 2.6/10  | 100万  | 4  | 4  | 6  | 1  | 
ecs.sgn7i-vws-m8s.4xlarge  | 16  | 32  | NVIDIA A10 * 1/3  | 24GB * 1/3  | 5/20  | 200万  | 8  | 4  | 10  | 1  | 
上表中的GPU列对应的指标包括GPU卡型号和GPU分片信息。其中,GPU分片表示1块GPU分成多片,每个实例上使用1片。例如:
NVIDIA A10 * 1/12中的NVIDIA A10表示GPU卡型号;1/12表示GPU分片,即1块GPU分成12片,每个实例上使用1片。
GPU虚拟化型实例规格族vgn7i-vws
规格族介绍:
依托第三代神龙架构,提供稳定可预期的超高性能。同时通过芯片快速路径加速手段,完成存储、网络性能以及计算稳定性的数量级提升,可以更快地存储数据和加载模型。
已包含NVIDIA GRID vWS的软件License,可以为各类专业CAD软件提供认证过的图形加速驱动能力,满足专业级图形设计的需求,也可以作为轻量级GPU计算型实例使用,降低小规模AI推理过程的使用成本。
适用场景:
配备高性能CPU、内存、GPU,可以处理更多并发AI推理任务,适用于图像识别、语音识别、行为识别业务。
支持RTX功能,搭配高主频CPU,提供高性能的3D图形虚拟化能力,适用于远程图形设计、云游戏等高强度图形处理业务。
使用Ice Lake处理器,在影视动漫制作、云游戏、机械设计等领域进行3D建模时,效果更加出色。
计算:
采用NVIDIA A10 GPU卡。
创新的Ampere架构。
支持vGPU、RTX、TensorRT等常用加速功能,提供多种业务支撑。
处理器:2.9 GHz主频的Intel ® Xeon ® 可扩展处理器(Ice Lake),全核睿频3.5 GHz。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘和ESSD同城冗余云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
vgn7i-vws包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 
ecs.vgn7i-vws-m4.xlarge  | 4  | 30  | NVIDIA A10 * 1/6  | 24GB * 1/6  | 3  | 100万  | 4  | 4  | 10  | 1  | 
ecs.vgn7i-vws-m8.2xlarge  | 10  | 62  | NVIDIA A10 * 1/3  | 24GB * 1/3  | 5  | 200万  | 8  | 6  | 10  | 1  | 
ecs.vgn7i-vws-m12.3xlarge  | 14  | 93  | NVIDIA A10 * 1/2  | 24GB * 1/2  | 8  | 300万  | 8  | 6  | 15  | 1  | 
ecs.vgn7i-vws-m24.7xlarge  | 30  | 186  | NVIDIA A10 * 1  | 24GB * 1  | 16  | 600万  | 12  | 8  | 30  | 1  | 
上表中的GPU列对应的指标包括GPU卡型号和GPU分片信息。其中,GPU分片表示1块GPU分成多片,每个实例上使用1片。例如:
NVIDIA A10 * 1/6中的NVIDIA A10表示GPU卡型号;1/6表示GPU的分片,即1块GPU分成6片,每个实例上使用1片。
GPU虚拟化型实例规格族vgn6i-vws
由于GRID驱动的升级,阿里云对原vgn6i规格族进行了升级,新规格族为vgn6i-vws。新规格族采用最新的GRID驱动,并赠送了GRID vws授权。因此您不再需要从云市场镜像购买收费镜像,而是直接使用云市场镜像中已经集成了最新驱动的免费镜像。创建实例时在云市场镜像中搜索GRID,可直接搜索到预装GRID驱动的免费镜像。
如果需要使用其他公共镜像或自定义镜像,由于这些镜像中未包含GRID驱动,请提交工单申请GRID驱动文件单独安装,阿里云不对GRID驱动额外收取License费用。
适用场景:
云游戏的云端实时渲染。
AR和VR的云端实时渲染。
AI(DL和ML)推理,适合弹性部署含有AI推理计算应用的互联网业务。
深度学习的教学练习环境。
深度学习的模型实验环境。
计算:
采用NVIDIA T4 GPU计算加速器。
实例包含分片虚拟化后的虚拟GPU。
计算能力支持NVIDIA Tesla T4的1/4和1/2。
GPU显存支持4 GB和8 GB。
处理器与内存配比约为1:5。
处理器:2.5 GHz主频的Intel ® Xeon ® Platinum 8163(Skylake)。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘、ESSD同城冗余云盘、SSD云盘和高效云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
vgn6i-vws包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 
ecs.vgn6i-m4-vws.xlarge  | 4  | 23  | NVIDIA T4 * 1/4  | 16GB * 1/4  | 2  | 50万  | 4/2  | 3  | 10  | 1  | 
ecs.vgn6i-m8-vws.2xlarge  | 10  | 46  | NVIDIA T4 * 1/2  | 16GB * 1/2  | 4  | 80万  | 8/2  | 4  | 10  | 1  | 
ecs.vgn6i-m16-vws.5xlarge  | 20  | 92  | NVIDIA T4 * 1  | 16GB * 1  | 7.5  | 120万  | 6  | 4  | 10  | 1  | 
上表中的GPU列对应的指标包括GPU卡型号和GPU分片信息。其中,GPU分片表示1块GPU分成多片,每个实例上使用1片。例如:
NVIDIA T4 * 1/4中的NVIDIA T4表示GPU卡型号;1/4表示GPU的分片,即1块GPU分成4片,每个实例上使用1片。
GPU计算型实例规格族gn8v/gn8v-tee
该实例目前仅支持海外等部分地域,如有需求,请联系阿里云销售人员。
规格族介绍:
gn8v:阿里云针对AI模型训练和超大参数量模型推理任务推出的第8代加速计算规格族(GPU计算型实例规格族),针对不同应用需求,为您提供1卡、2卡、4卡和8卡多种机型。
gn8v-tee:为了满足您使用大模型进行模型训练和推理的安全性要求,阿里云基于gn8v推出一款具有机密计算特性的第8代实例规格族。该实例在GPU计算过程中对数据进行加密,确保用户数据的安全性。
适用场景:
对于70 B以上的LLM模型,进行多卡并行推理计算时性价比较高。
单个GPU提供39.5 TFLOPS FP32算力,在传统AI模型训练和自动驾驶训练业务中性能突出。
8卡之间支持NVLINK互联,适用于中小模型训练场景。
产品特色及定位:
高速&大容量显存:每个GPU配备了96 GB容量的HBM3显存,且显存带宽可以达到4 TB/s,大幅加快了模型训练和推理速度。
高卡间带宽:多个GPU卡之间通过900 GB/s NVLINK互联,多卡训练和推理的效率远超过历代GPU产品。
大模型量化技术:支持FP8算力,对大规模参数训练和推理过程的算力进行优化,大幅提升训练和推理的计算速度,降低显存占用。
(仅限gn8v-tee系列产品)高安全性:支持CPU机密计算(Intel TDX)和GPU机密计算(NVIDIA CC)功能,闭环全链路模型推理的机密计算能力。对于模型推理和训练的安全性,开启机密计算能力保障用户推理数据和企业模型的安全。
计算:
采用最新的CIPU 1.0云处理器。
具有解耦计算和存储能力,可以灵活选择所需存储资源。
提供裸金属能力,相对于传统虚拟化实例,可以支持GPU实例之间的P2P通信。
采用Intel第4代Xeon可扩展处理器,全核睿频可达3.1 GHz,基频可达2.8 GHz。
存储:
I/O优化实例。
支持NVMe协议。详情参见NVMe协议概述。
支持的云盘类型:弹性临时盘、ESSD云盘、ESSD AutoPL云盘和ESSD同城冗余云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,请参见IPv6通信。
支持巨型帧(Jumbo frames)。更多信息,请参见巨型帧(Jumbo Frames)。
超高网络性能,最大3000万PPS网络收发包能力(8卡实例)。
支持ERI(Elastic RDMA Interface)。
- 说明
关于ERI的使用说明,请参见在企业级实例上启用eRDMA或在GPU实例上启用eRDMA。
 
安全:支持可信计算(vTPM)特性(仅gn8v支持,gn8v-tee不支持)。更多详情,请参见可信计算能力概述。
gn8v包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU显存  | 网络基础带宽(Gbit/s)  | 弹性网卡  | 队列数量(主)  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 最大支持云盘数量  | 云盘基础IOPS  | 云盘基础带宽(GB/s)  | 
ecs.gn8v.4xlarge  | 16  | 96  | 96GB * 1  | 12  | 8  | 16  | 30  | 30  | 17  | 10万  | 0.75  | 
ecs.gn8v.6xlarge  | 24  | 128  | 96GB * 1  | 15  | 8  | 24  | 30  | 30  | 17  | 12万  | 0.937  | 
ecs.gn8v-2x.8xlarge  | 32  | 192  | 96GB * 2  | 20  | 8  | 32  | 30  | 30  | 25  | 20万  | 1.25  | 
ecs.gn8v-4x.8xlarge  | 32  | 384  | 96GB * 4  | 20  | 8  | 32  | 30  | 30  | 25  | 20万  | 1.25  | 
ecs.gn8v-2x.12xlarge  | 48  | 256  | 96GB * 2  | 25  | 8  | 48  | 30  | 30  | 33  | 30万  | 1.50  | 
ecs.gn8v-8x.16xlarge  | 64  | 768  | 96GB * 8  | 32  | 8  | 64  | 30  | 30  | 33  | 36万  | 2.5  | 
ecs.gn8v-4x.24xlarge  | 96  | 512  | 96GB * 4  | 50  | 15  | 64  | 30  | 30  | 49  | 50万  | 3  | 
ecs.gn8v-8x.48xlarge  | 192  | 1024  | 96GB * 8  | 100  | 15  | 64  | 50  | 50  | 65  | 100万  | 6  | 
gn8v-tee包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU显存  | 网络基础带宽(Gbit/s)  | 弹性网卡  | 队列数量(主)  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 最大支持云盘数量  | 云盘基础IOPS  | 云盘基础带宽(GB/s)  | 
ecs.gn8v-tee.4xlarge  | 16  | 96  | 96GB * 1  | 12  | 8  | 16  | 30  | 30  | 17  | 10万  | 0.75  | 
ecs.gn8v-tee.6xlarge  | 24  | 128  | 96GB * 1  | 15  | 8  | 24  | 30  | 30  | 17  | 12万  | 0.937  | 
ecs.gn8v-tee-8x.16xlarge  | 64  | 768  | 96GB * 8  | 32  | 8  | 64  | 30  | 30  | 33  | 36万  | 2.5  | 
ecs.gn8v-tee-8x.48xlarge  | 192  | 1024  | 96GB * 8  | 100  | 15  | 64  | 50  | 50  | 65  | 100万  | 6  | 
GPU计算型实例规格族gn8is
该实例目前仅支持海外等部分地域,如有需求,请联系阿里云销售人员。
规格族介绍:gn8is是阿里云针对近期AI生成业务的发展推出的第8代加速计算规格族(GPU计算型实例规格族),针对不同应用需求,采用最新NVIDIA L20 GPU,为您提供1卡、2卡、4卡和8卡机型,以及不同CPU和GPU配比的实例规格。
产品特色及定位:
图形处理:该产品采用Intel第5代Xeon Scaleable高主频处理器,在3D建模场景中,为您提供足够的CPU算力支撑,使得图形的渲染和设计更加顺畅。
推理任务:采用全新NVIDIA L20,单卡配置48 GB显存来加速推理任务,支持FP8浮点数格式,搭配ACK容器可灵活支持各类AIGC模型的推理,尤其适用于70 B以下LLM模型的推理任务。
适用场景:
结合云市场的GRID镜像使用GRID驱动,启动OpenGL和Direct3D图形能力,提供工作站级图形处理能力,适用于动漫、影视特效制作和渲染。
结合ACK容器化管理能力,更高效、低成本地支撑AIGC图形生成和LLM大模型推理。
其他通用AI识别场景、图像识别、语音识别等。
计算:
采用全新NVIDIA L20企业级GPU。
支持TensorRT等常用加速功能,支持FP8浮点数格式,提升模型推理性能。
显存容量提升至48 GB,多卡情况下,支持70 B及更大模型的单机推理。
支持图形处理能力,例如通过云助手方式或选择云市场镜像方式安装GRID驱动后,图形处理性能相对7代平台提升1倍。
NVIDIA L20主要参数:
GPU架构
GPU显存
计算性能
视频编解码能力
卡间互联
NVIDIA Ada Lovelace
容量:48 GB
带宽:864GB/s
FP64: N/A
FP32: 59.3 TFLOPS
FP16/BF16: 119 TFLOPS
FP8/INT8: 237 TFLOPS
3 * Video Encoder(+AV1)
3 * Video Decoder
4 * JPEG Decoder
PCIe接口:PCIe Gen4 x16
带宽:64GB/s
处理器:采用最新的Intel ® Xeon ®高主频处理器,全核睿频可达3.9 GHz,以应对更复杂的3D建模需求。
存储:
I/O优化实例。
支持NVMe协议。详情参见NVMe协议概述。
支持的云盘类型:弹性临时盘、ESSD云盘、ESSD AutoPL云盘和ESSD同城冗余云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
支持ERI(Elastic RDMA Interface)。
说明关于ERI的使用说明,请参见在企业级实例上启用eRDMA或在GPU实例上启用eRDMA。
安全:支持可信计算(vTPM)特性。更多详情,请参见可信计算能力概述。
gn8is包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 网络基础带宽(Gbit/s)  | 弹性网卡  | 队列数量(主)  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 最大支持云盘数量  | 云盘基础IOPS  | 云盘基础带宽(GB/s)  | 
ecs.gn8is.2xlarge  | 8  | 64  | L20 * 1  | 48GB * 1  | 8  | 4  | 8  | 15  | 15  | 17  | 6万  | 0.75  | 
ecs.gn8is.4xlarge  | 16  | 128  | L20 * 1  | 48GB * 1  | 16  | 8  | 16  | 30  | 30  | 17  | 12万  | 1.25  | 
ecs.gn8is-2x.8xlarge  | 32  | 256  | L20 * 2  | 48GB * 2  | 32  | 8  | 32  | 30  | 30  | 33  | 25万  | 2  | 
ecs.gn8is-4x.16xlarge  | 64  | 512  | L20 * 4  | 48GB * 4  | 64  | 8  | 64  | 30  | 30  | 33  | 45万  | 4  | 
ecs.gn8is-8x.32xlarge  | 128  | 1024  | L20 * 8  | 48GB * 8  | 100  | 15  | 64  | 50  | 50  | 65  | 90万  | 8  | 
GPU计算型实例规格族gn7e
gn7e的特点如下:
规格族介绍:
您可以根据需要选择不同数量的卡和不同CPU资源的规格,灵活适应其不同的AI业务需求。
依托第三代神龙架构,VPC和云盘网络带宽相比上一代平均提升一倍。
适用场景:
中小规模的AI训练业务。
使用CUDA进行加速的HPC业务。
对GPU处理能力或显存容量需求较高的AI推理业务。
深度学习,例如图像分类、无人驾驶、语音识别等人工智能算法的训练应用。
高GPU负载的科学计算,例如计算流体动力学、计算金融学、分子动力学、环境分析等。
重要在使用高通信负载的AI训练业务如Transformer等模型时,务必启用NVLink进行GPU间的数据通信,否则可能由于PCIe链路大规模数据传输引起非预期的故障,导致数据受损。如不确定您使用的训练通信链路拓扑,请提交工单由阿里云技术专家为您提供技术支持。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘和ESSD同城冗余云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
gn7e包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 
ecs.gn7e-c16g1.4xlarge  | 16  | 125  | 80GB * 1  | 8  | 300万  | 8  | 8  | 10  | 1  | 
ecs.gn7e-c16g1.8xlarge  | 32  | 250  | 80GB * 2  | 16  | 600万  | 16  | 8  | 10  | 1  | 
ecs.gn7e-c16g1.16xlarge  | 64  | 500  | 80GB * 4  | 32  | 1200万  | 32  | 8  | 10  | 1  | 
ecs.gn7e-c16g1.32xlarge  | 128  | 1000  | 80GB * 8  | 64  | 2400万  | 32  | 16  | 15  | 1  | 
GPU计算型实例规格族gn7i
规格族介绍:依托第三代神龙架构,提供稳定可预期的超高性能。同时通过芯片快速路径加速手段,完成存储、网络性能以及计算稳定性的数量级提升。
适用场景:
配备高性能CPU、内存、GPU,可以处理更多并发AI推理任务,适用于图像识别、语音识别、行为识别业务。
支持RTX功能,搭配高主频CPU,提供高性能的3D图形虚拟化能力,适用于远程图形设计、云游戏等高强度图形处理业务。
计算:
采用NVIDIA A10 GPU卡。
创新的Ampere架构。
支持RTX、TensorRT等常用加速功能。
处理器:2.9 GHz主频的Intel ® Xeon ® 可扩展处理器(Ice Lake),全核睿频3.5 GHz。
最大可提供752 GiB内存,相比gn6i大幅提升。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘和ESSD同城冗余云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
gn7i包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 
ecs.gn7i-c8g1.2xlarge  | 8  | 30  | NVIDIA A10 * 1  | 24GB * 1  | 16  | 160万  | 8  | 4  | 15  | 15  | 
ecs.gn7i-c16g1.4xlarge  | 16  | 60  | NVIDIA A10 * 1  | 24GB * 1  | 16  | 300万  | 8  | 8  | 30  | 30  | 
ecs.gn7i-c32g1.8xlarge  | 32  | 188  | NVIDIA A10 * 1  | 24GB * 1  | 16  | 600万  | 12  | 8  | 30  | 30  | 
ecs.gn7i-c32g1.16xlarge  | 64  | 376  | NVIDIA A10 * 2  | 24GB * 2  | 32  | 1200万  | 16  | 15  | 30  | 30  | 
ecs.gn7i-c32g1.32xlarge  | 128  | 752  | NVIDIA A10 * 4  | 24GB * 4  | 64  | 2400万  | 32  | 15  | 30  | 30  | 
ecs.gn7i-c48g1.12xlarge  | 48  | 310  | NVIDIA A10 * 1  | 24GB * 1  | 16  | 900万  | 16  | 8  | 30  | 30  | 
ecs.gn7i-c56g1.14xlarge  | 56  | 346  | NVIDIA A10 * 1  | 24GB * 1  | 16  | 1000万  | 16  | 8  | 30  | 30  | 
ecs.gn7i-2x.8xlarge  | 32  | 128  | NVIDIA A10 * 2  | 24GB * 2  | 16  | 600万  | 16  | 8  | 30  | 30  | 
ecs.gn7i-4x.8xlarge  | 32  | 128  | NVIDIA A10 * 4  | 24GB * 4  | 32  | 600万  | 16  | 8  | 30  | 30  | 
ecs.gn7i-4x.16xlarge  | 64  | 256  | NVIDIA A10 * 4  | 24GB * 4  | 64  | 1200万  | 32  | 8  | 30  | 30  | 
ecs.gn7i-8x.32xlarge  | 128  | 512  | NVIDIA A10 * 8  | 24GB * 8  | 64  | 2400万  | 32  | 16  | 30  | 30  | 
ecs.gn7i-8x.16xlarge  | 64  | 256  | NVIDIA A10 * 8  | 24GB * 8  | 32  | 1200万  | 32  | 8  | 30  | 30  | 
ecs.gn7i-2x.8xlarge、ecs.gn7i-4x.8xlarge、ecs.gn7i-4x.16xlarge、ecs.gn7i-8x.32xlarge以及ecs.gn7i-8x.16xlarge实例规格支持更改为ecs.gn7i-c8g1.2xlarge或ecs.gn7i-c16g1.4xlarge实例规格,但不支持更改为ecs.gn7i-c32g1.8xlarge等其他实例规格。
GPU计算型实例规格族gn7s
如需使用gn7s,请提交工单申请。
规格族介绍:
采用全新的Intel IceLake处理器,同时搭载Nvidia Ampere架构的NVIDIA A30 GPU卡,您可以根据需要选择不同GPU卡数和不同CPU资源的规格,灵活适应不同的AI业务需求。
基于阿里云全新的第三代神龙架构,VPC和云盘网络带宽相比上一代平均提升一倍。
适用场景:配备高性能CPU、内存、GPU,可以处理更多并发AI推理业务需求,适用于图像识别、语音识别、行为识别业务。
计算:
采用NVIDIA A30 GPU卡。
创新的Nvidia Ampere架构。
支持MIG(Multi-Instance GPU)功能、加速功能(基于第二代Tensor Cores加速),提供多种业务支持。
处理器:2.9 GHz主频的Intel ® Xeon ® 可扩展处理器(Ice Lake),全核睿频3.5 GHz。
容量内存相比上一代实例规格族大幅提升。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘和ESSD同城冗余云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
gn7s包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 多队列  | 弹性网卡  | 
ecs.gn7s-c8g1.2xlarge  | 8  | 60  | NVIDIA A30 * 1  | 24GB * 1  | 16  | 160万  | 5  | 1  | 8  | 4  | 
ecs.gn7s-c16g1.4xlarge  | 16  | 120  | NVIDIA A30 * 1  | 24GB * 1  | 16  | 300万  | 5  | 1  | 8  | 8  | 
ecs.gn7s-c32g1.8xlarge  | 32  | 250  | NVIDIA A30 * 1  | 24GB * 1  | 16  | 600万  | 5  | 1  | 12  | 8  | 
ecs.gn7s-c32g1.16xlarge  | 64  | 500  | NVIDIA A30 * 2  | 24GB * 2  | 32  | 1200万  | 5  | 1  | 16  | 15  | 
ecs.gn7s-c32g1.32xlarge  | 128  | 1000  | NVIDIA A30 * 4  | 24GB * 4  | 64  | 2400万  | 10  | 1  | 32  | 15  | 
ecs.gn7s-c48g1.12xlarge  | 48  | 380  | NVIDIA A30 * 1  | 24GB * 1  | 16  | 900万  | 8  | 1  | 16  | 8  | 
ecs.gn7s-c56g1.14xlarge  | 56  | 440  | NVIDIA A30 * 1  | 24GB * 1  | 16  | 1000万  | 8  | 1  | 16  | 8  | 
GPU计算型实例规格族gn7
适用场景:
深度学习,例如图像分类、无人驾驶、语音识别等人工智能算法的训练应用。
高GPU负载的科学计算,例如计算流体动力学、计算金融学、分子动力学、环境分析等。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘和ESSD同城冗余云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
gn7包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 
ecs.gn7-c12g1.3xlarge  | 12  | 94  | 40GB * 1  | 4  | 250万  | 4  | 8  | 10  | 1  | 
ecs.gn7-c13g1.13xlarge  | 52  | 378  | 40GB * 4  | 16  | 900万  | 16  | 8  | 30  | 30  | 
ecs.gn7-c13g1.26xlarge  | 104  | 756  | 40GB * 8  | 30  | 1800万  | 16  | 15  | 10  | 1  | 
GPU计算型实例规格族gn7r
规格族介绍:
gn7r是阿里云推出的企业级ARM处理器+GPU的多功能规格族产品。以ARM架构为基础开发Android线上应用和云手机、云手游等业务,为其提供云原生底层资源平台。同时,其配备的NVIDIA A16 GPU具备多芯片硬件转码能力,可以作为高性价比的视频转码平台,将成本降低至ASIC类转码平台的水平。同时支持基于CUDA的计算架构,可在解码后直接在GPU上进行AI识别和分析。
基于第三代神龙架构,通过CIPU云处理器进行云端资源管理,提供稳定可预期的超高计算、存储和网络性能。
采用NVIDIA A16 GPU计算加速器提供GPU加速能力,支持图形加速、硬件转码和AI业务。
说明每块NVIDIA A16卡包含4个GA 107处理芯片。
适用场景:基于Android提供APP远端服务,例如云业务在线待机、云手游和云手机、Android业务爬虫、视频业务转码、视频识别、审查、视频编辑等。
计算:
处理器:3.0 GHz主频的Ampere ® Altra ® Max处理器,原生ARM计算平台为Android服务器提供高效的性能和优秀的App兼容性。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘和ESSD同城冗余云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
gn7r包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 多队列  | 弹性网卡  | 
ecs.gn7r-c16g1.4xlarge  | 16  | 64  | NVIDIA GA107 * 1  | 8  | 300万  | 15  | 1  | 8  | 8  | 
GPU计算型实例规格族gn6i
适用场景:
AI(DL和ML)推理,适合计算机视觉、语音识别、语音合成、NLP、机器翻译、推荐系统。
云游戏云端实时渲染。
AR和VR的云端实时渲染。
重载图形计算或图形工作站。
GPU加速数据库。
高性能计算。
计算:
GPU加速器:T4。
创新的Turing架构。
单GPU显存16 GB(GPU显存带宽320 GB/s)。
单GPU 2560个CUDA Cores。
单GPU多达320个Turing Tensor Cores。
可变精度Tensor Cores支持65 TFLOPS FP16、130 INT8 TOPS以及260 INT4 TOPS。
处理器与内存配比约为1:4。
处理器:2.5 GHz主频的Intel ® Xeon ® Platinum 8163(Skylake)。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘、SSD云盘和高效云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
gn6i包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 云盘基础IOPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 
ecs.gn6i-c4g1.xlarge  | 4  | 15  | NVIDIA T4 * 1  | 16GB * 1  | 4  | 250万  | 无  | 2  | 2  | 10  | 1  | 
ecs.gn6i-c8g1.2xlarge  | 8  | 31  | NVIDIA T4 * 1  | 16GB * 1  | 5  | 250万  | 无  | 2  | 2  | 10  | 1  | 
ecs.gn6i-c16g1.4xlarge  | 16  | 62  | NVIDIA T4 * 1  | 16GB * 1  | 6  | 250万  | 无  | 4  | 3  | 10  | 1  | 
ecs.gn6i-c24g1.6xlarge  | 24  | 93  | NVIDIA T4 * 1  | 16GB * 1  | 7.5  | 250万  | 无  | 6  | 4  | 10  | 1  | 
ecs.gn6i-c40g1.10xlarge  | 40  | 155  | NVIDIA T4 * 1  | 16GB * 1  | 10  | 160万  | 无  | 16  | 10  | 10  | 1  | 
ecs.gn6i-c24g1.12xlarge  | 48  | 186  | NVIDIA T4 * 2  | 16GB * 2  | 15  | 450万  | 无  | 12  | 6  | 10  | 1  | 
ecs.gn6i-c24g1.24xlarge  | 96  | 372  | NVIDIA T4 * 4  | 16GB * 4  | 30  | 450万  | 25万  | 24  | 8  | 10  | 1  | 
GPU计算型实例规格族gn6e
适用场景:
深度学习,例如图像分类、无人驾驶、语音识别等人工智能算法的训练、推理应用。
科学计算,例如计算流体动力学、计算金融学、分子动力学、环境分析等。
计算:
采用NVIDIA V100(32 GB NVLink)GPU卡。
GPU加速器:V100(SXM2封装)。
创新的Volta架构。
单GPU显存32 GB HBM2(GPU显存带宽900 GB/s)。
单GPU 5120个CUDA Cores。
单GPU 640个Tensor Cores。
单GPU支持6个NVLink链路(NVLink属于双向链路),单向链路的带宽为25 Gbit/s,总带宽为6×25×2=300 Gbit/s。
处理器与内存配比约为1:8。
处理器:2.5 GHz主频的Intel ® Xeon ® Platinum 8163(Skylake)。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘、ESSD同城冗余云盘、SSD云盘和高效云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
gn6e包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 
ecs.gn6e-c12g1.3xlarge  | 12  | 92  | NVIDIA V100 * 1  | 32GB * 1  | 5  | 80万  | 8  | 6  | 10  | 1  | 
ecs.gn6e-c12g1.6xlarge  | 24  | 184  | NVIDIA V100 * 2  | 32GB * 2  | 8  | 120万  | 8  | 8  | 20  | 1  | 
ecs.gn6e-c12g1.12xlarge  | 48  | 368  | NVIDIA V100 * 4  | 32GB * 4  | 16  | 240万  | 8  | 8  | 20  | 1  | 
ecs.gn6e-c12g1.24xlarge  | 96  | 736  | NVIDIA V100 * 8  | 32GB * 8  | 32  | 450万  | 16  | 8  | 20  | 1  | 
GPU计算型实例规格族gn6v
适用场景:
深度学习,例如图像分类、无人驾驶、语音识别等人工智能算法的训练、推理应用。
科学计算,例如计算流体动力学、计算金融学、分子动力学、环境分析等。
计算:
采用NVIDIA V100 GPU卡。
GPU加速器:V100(SXM2封装) 。
创新的Volta架构。
单GPU显存16 GB HBM2(GPU显存带宽900 GB/s)。
单GPU 5120个CUDA Cores。
单GPU 640个Tensor Cores。
单GPU支持6个NVLink链路(NVLink属于双向链路),单向链路的带宽为25 Git/s,总带宽为6×25×2=300 Git/s。
处理器与内存配比约为1:4。
处理器:2.5 GHz主频的Intel ® Xeon ® Platinum 8163(Skylake)。
存储:
I/O优化实例。
支持的云盘类型:ESSD云盘、ESSD AutoPL云盘、SSD云盘和高效云盘。更多云盘信息,请参见块存储概述。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
gn6v包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 云盘基础IOPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 
ecs.gn6v-c8g1.2xlarge  | 8  | 32  | NVIDIA V100 * 1  | 16GB * 1  | 2.5  | 80万  | 无  | 4  | 4  | 10  | 1  | 
ecs.gn6v-c8g1.4xlarge  | 16  | 64  | NVIDIA V100 * 2  | 16GB * 2  | 5  | 100万  | 无  | 4  | 8  | 20  | 1  | 
ecs.gn6v-c8g1.8xlarge  | 32  | 128  | NVIDIA V100 * 4  | 16GB * 4  | 10  | 200万  | 无  | 8  | 8  | 20  | 1  | 
ecs.gn6v-c8g1.16xlarge  | 64  | 256  | NVIDIA V100 * 8  | 16GB * 8  | 20  | 250万  | 无  | 16  | 8  | 20  | 1  | 
ecs.gn6v-c10g1.20xlarge  | 82  | 336  | NVIDIA V100 * 8  | 16GB * 8  | 35  | 450万  | 25万  | 16  | 8  | 20  | 1  | 
GPU计算型实例规格族gn5
适用场景:
深度学习。
科学计算,例如计算流体动力学、计算金融学、基因组学研究、环境分析。
高性能计算、渲染、多媒体编解码及其他服务器端GPU计算工作负载。
计算:
采用NVIDIA P100 GPU卡。
多种处理器与内存配比。
处理器:2.5 GHz主频的Intel ® Xeon ® E5-2682 v4(Broadwell)。
存储:
配备高性能NVMe SSD本地盘。
I/O优化实例。
支持的云盘类型:SSD云盘和高效云盘。
网络:
仅支持IPv4
实例网络性能与实例规格对应,规格越高网络性能越强。
gn5包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 本地存储(GiB)  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 
ecs.gn5-c4g1.xlarge  | 4  | 30  | NVIDIA P100 * 1  | 16GB * 1  | 440  | 3  | 30万  | 1  | 3  | 10  | 
ecs.gn5-c8g1.2xlarge  | 8  | 60  | NVIDIA P100 * 1  | 16GB * 1  | 440  | 3  | 40万  | 1  | 4  | 10  | 
ecs.gn5-c4g1.2xlarge  | 8  | 60  | NVIDIA P100 * 2  | 16GB * 2  | 880  | 5  | 100万  | 4  | 4  | 10  | 
ecs.gn5-c8g1.4xlarge  | 16  | 120  | NVIDIA P100 * 2  | 16GB * 2  | 880  | 5  | 100万  | 4  | 8  | 20  | 
ecs.gn5-c28g1.7xlarge  | 28  | 112  | NVIDIA P100 * 1  | 16GB * 1  | 440  | 5  | 225万  | 7  | 8  | 10  | 
ecs.gn5-c8g1.8xlarge  | 32  | 240  | NVIDIA P100 * 4  | 16GB * 4  | 1760  | 10  | 200万  | 8  | 8  | 20  | 
ecs.gn5-c28g1.14xlarge  | 56  | 224  | NVIDIA P100 * 2  | 16GB * 2  | 880  | 10  | 450万  | 14  | 8  | 20  | 
ecs.gn5-c8g1.14xlarge  | 54  | 480  | NVIDIA P100 * 8  | 16GB * 8  | 3520  | 25  | 400万  | 14  | 8  | 10  | 
GPU计算型实例规格族gn5i
适用场景: 深度学习推理、多媒体编解码等服务器端GPU计算工作负载。
计算:
采用NVIDIA P4 GPU卡。
处理器与内存配比为1:4。
处理器:2.5 GHz主频的Intel ® Xeon ® E5-2682 v4(Broadwell)。
存储:
I/O优化实例。
支持的云盘类型:SSD云盘和高效云盘。
网络:
支持IPv4、IPv6。关于IPv6通信,参见IPv6通信。
实例网络性能与实例规格对应,规格越高网络性能越强。
gn5i包括的实例规格及指标数据如下表所示:
实例规格  | vCPU  | 内存(GiB)  | GPU  | GPU显存  | 网络基础带宽(Gbit/s)  | 网络收发包PPS  | 多队列  | 弹性网卡  | 单网卡私有IPv4地址数  | 单网卡IPv6地址数  | 
ecs.gn5i-c2g1.large  | 2  | 8  | NVIDIA P4 * 1  | 8GB * 1  | 1  | 10万  | 2  | 2  | 6  | 1  | 
ecs.gn5i-c4g1.xlarge  | 4  | 16  | NVIDIA P4 * 1  | 8GB * 1  | 1.5  | 20万  | 2  | 3  | 10  | 1  | 
ecs.gn5i-c8g1.2xlarge  | 8  | 32  | NVIDIA P4 * 1  | 8GB * 1  | 2  | 40万  | 4  | 4  | 10  | 1  | 
ecs.gn5i-c16g1.4xlarge  | 16  | 64  | NVIDIA P4 * 1  | 8GB * 1  | 3  | 80万  | 4  | 8  | 20  | 1  | 
ecs.gn5i-c16g1.8xlarge  | 32  | 128  | NVIDIA P4 * 2  | 8GB * 2  | 6  | 120万  | 8  | 8  | 20  | 1  | 
ecs.gn5i-c28g1.14xlarge  | 56  | 224  | NVIDIA P4 * 2  | 8GB * 2  | 10  | 200万  | 14  | 8  | 20  | 1  |