数据层次的划分

  • ODS:Operational Data Store,操作数据层,在结构上其与源系统的增量或者全量数据基本保持一致。它相当于DW数据的一个数据准备区,同时又承担着基础数据的记录以及历史变化。其主要作用是把基础数据引入到MaxCompute。
  • CDM:Common Data Model,公共维度模型层,又细分为DWD和DWS。它的主要作用是完成数据加工与整合,建立一致性的维度,构建可复用的面向分析和统计的明细事实表,以及汇总公共粒度的指标。
    • DWD:Data Warehouse Detail,明细数据层。
    • DWS:Data Warehouse Summary,汇总数据层。
  • ADS:Application Data Service,应用数据层。

具体仓库的分层情况需要结合业务场景、数据场景、系统场景进行综合考虑。

数据分类架构



该数据分类架构在ODS层分为三部分:数据准备区,离线数据和准实时数据区。在进入到CDM层后,由以下几部分组成:
  • 公共维度层:基于维度建模理念思想,建立整个企业的一致性维度。
  • 明细粒度事实层:以业务过程为建模驱动,基于每个具体业务过程的特点,构建最细粒度的明细层事实表。您可以结合企业的数据使用特点,将明细事实表的某些重要维度属性字段做适当的冗余,即宽表化处理。
  • 公共汇总粒度事实层:以分析的主题对象为建模驱动,基于上层的应用和产品的指标需求,构建公共粒度的汇总指标事实表,以宽表化手段来物理化模型。

数据处理流程架构



数据划分及命名空间约定

请根据业务划分数据并约定命名,建议针对业务名称结合数据层次约定相关命名的英文缩写,这样可以给后续数据开发过程中,对项目空间、表、字段等命名做为重要参照。
  • 按业务划分:命名时按主要的业务划分,以指导物理模型的划分原则、命名原则及使用的ODS project。例如,按业务定义英文缩写,阿里的“淘宝”英文缩写可以定义为'tb'。
  • 按数据域划分:命名时按照CDM层的数据进行数据域划分,以便有效地对数据进行管理,以及指导数据表的命名。例如,“交易”数据的英文缩写可定义为'trd'。
  • 按业务过程划分:当一个数据域由多个业务过程组成时,命名时可以按业务流程划分。业务过程是从数据分析角度看客观存在的或者抽象的业务行为动作。例如,交易数据域中的“退款”这个业务过程的英文缩写可约定命名为'rfd_ent'。

数据模型

模型是对现实事物的反映和抽象,能帮助我们更好地了解客观世界。数据模型定义了数据之间关系和结构,使得我们可以有规律地获取想要的数据。例如,在一个超市里,商品的布局都有特定的规范,商品摆放的位置是按照消费者的购买习惯以及人流走向进行摆放的。

  • 数据模型的作用

    数据模型是在业务需求分析之后,数据仓库工作开始时的第一步。良好的数据模型可以帮助我们更好地存储数据,更有效率地获取数据,保证数据间的一致性。

  • 模型设计的基本原则
    • 高内聚和低耦合

      一个逻辑和物理模型由哪些记录和字段组成,应该遵循最基本的软件设计方法论中的高内聚和低耦合原则。主要从数据业务特性和访问特性两个角度来考虑:将业务相近或者相关的数据、粒度相同数据设计为一个逻辑或者物理模型;将高概率同时访问的数据放一起,将低概率同时访问的数据分开存储。

    • 核心模型与扩展模型分离

      建立核心模型与扩展模型体系,核心模型包括的字段支持常用核心的业务,扩展模型包括的字段支持个性化或是少量应用的需要。在必须让核心模型与扩展模型做关联时,不能让扩展字段过度侵入核心模型,以免破坏了核心模型的架构简洁性与可维护性。

    • 公共处理逻辑下沉及单一

      底层公用的处理逻辑应该在数据调度依赖的底层进行封装与实现,不要让公用的处理逻辑暴露给应用层实现,不要让公共逻辑在多处同时存在。

    • 成本与性能平衡

      适当的数据冗余可换取查询和刷新性能,不宜过度冗余与数据复制。

    • 数据可回滚

      处理逻辑不变,在不同时间多次运行数据的结果需确定不变。

    • 一致性

      相同的字段在不同表中的字段名必须相同。

    • 命名清晰可理解

      表命名规范需清晰、一致,表命名需易于下游的理解和使用。

说明
  • 一个模型无法满足所有的需求。
  • 需合理选择数据模型的建模方式。
  • 通常,设计顺序依次为:概念模型->逻辑模型->物理模型。