基础特性

Java Low Level REST Client是Elasticsearch官方提供的低级别REST客户端,其API不负责数据的编码与解码。Lindorm向量引擎支持向量数据检索功能,兼容Elasticsearch协议,同时支持标量、向量、全文混合检索功能。如果您想要自定义请求和响应处理方式,可以通过Java Low Level REST Client访问向量引擎。

前提条件

  • 已安装Java环境,要求安装JDK 1.8及以上版本。

  • 已开通向量引擎。如何开通,请参见开通向量引擎

  • 已开通搜索引擎。如何开通,请参见开通指南

  • 已将客户端IP地址添加至Lindorm白名单,具体操作请参见设置白名单

准备工作

安装Java Low Level REST Client

以Maven项目为例,在pom.xml文件的dependencies中添加依赖项。示例代码如下:

<dependency>
  <groupId>org.elasticsearch.client</groupId>
  <artifactId>elasticsearch-rest-client</artifactId>
  <version>7.10.0</version>
</dependency>
<dependency>
  <groupId>org.apache.logging.log4j</groupId>
  <artifactId>log4j-core</artifactId>
  <version>2.8.2</version>
</dependency>
<dependency>
  <groupId>org.apache.logging.log4j</groupId>
  <artifactId>log4j-api</artifactId>
  <version>2.7</version>
</dependency>

连接搜索引擎

//Lindorm搜索引擎的Elasticsearch兼容地址
String search_url = "ld-t4n5668xk31ui****-proxy-search-public.lindorm.rds.aliyuncs.com";
int search_port = 30070;

// 配置用户名密码
String username = "user";
String password = "test";
final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
credentialsProvider.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials(username, password));
RestClientBuilder restClientBuilder = RestClient.builder(new HttpHost(search_url, search_port));
restClientBuilder.setHttpClientConfigCallback(new RestClientBuilder.HttpClientConfigCallback() {
  @Override
  public HttpAsyncClientBuilder customizeHttpClient(HttpAsyncClientBuilder httpClientBuilder) {
    return httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
  }
});

参数说明

参数

说明

search_url

Lindorm搜索引擎的Elasticsearch兼容地址。如何获取,请参见查看连接地址

重要
  • 如果应用部署在ECS实例,建议您通过专有网络访问Lindorm实例,可获得更高的安全性和更低的网络延迟。

  • 如果应用部署在本地,在通过公网连接Lindorm实例前,需在控制台开通公网地址。开通方式:在控制台的左侧导航栏,选择数据库连接,单击搜索引擎页签,在页签右上角单击开通公网地址

  • 通过专有网络访问Lindorm实例,search_url请填写Elasticsearch兼容地址对应的专有网络地址。通过公网访问Lindorm实例,search_url请填写Elasticsearch兼容地址对应的公网地址。

search_port

Lindorm搜索引擎Elasticsearch兼容的端口,固定为30070。

username

访问搜索引擎的用户名和密码。

默认用户名和密码的获取方式:在控制台的左侧导航栏,选择数据库连接,单击搜索引擎页签,在搜索引擎页签可获取。

password

创建向量索引

hnsw类型索引

以创建索引vector_test为例:

String indexName = "vector_test";

// 创建索引
Request indexRequest = new Request("PUT", "/" + indexName);
indexRequest.setJsonEntity("{\n" +
  " \"settings\" : {\n" +
  "    \"index\": {\n" +
  "      \"number_of_shards\": 2,\n" +
  "      \"knn\": true\n" +
  "    }\n" +
  "  },\n" +
  "  \"mappings\": {\n" +
  "    \"_source\": {\n" +
  "      \"excludes\": [\"vector1\"]\n" +
  "    },\n" +
  "    \"properties\": {\n" +
  "      \"vector1\": {\n" +
  "        \"type\": \"knn_vector\",\n" +
  "        \"dimension\": 3,\n" +
  "        \"data_type\": \"float\",\n" +
  "        \"method\": {\n" +
  "          \"engine\": \"lvector\",\n" +
  "          \"name\": \"hnsw\", \n" +
  "          \"space_type\": \"l2\",\n" +
  "          \"parameters\": {\n" +
  "            \"m\": 24,\n" +
  "            \"ef_construction\": 500\n" +
  "         }\n" +
  "       }\n" +
  "      },\n" +
  "      \"field1\": {\n" +
  "        \"type\": \"long\"\n" +
  "      }\n" +
  "    }\n" +
  "  }\n" +
  "}");
Response response = restClient.performRequest(indexRequest);
String responseBody = EntityUtils.toString(response.getEntity());
System.out.println("responseBody = " + responseBody);

ivfpq类型索引

以创建索引vector_ivfpq_test为例:

String indexName = "vector_ivfpq_test";
Request indexRequest = new Request("PUT", "/" + indexName);
int dim = 3;
String createIndexJson = "{\n" +
  "  \"settings\": {\n" +
  "    \"index\": {\n" +
  "      \"number_of_shards\": 4,\n" +
  "      \"knn\": true,\n" +
  "      \"knn.offline.construction\": true\n" +
  "    }\n" +
  "  },\n" +
  "  \"mappings\": {\n" +
  "    \"_source\": {\n" +
  "      \"excludes\": [\"vector1\"]\n" +
  "    },\n" +
  "    \"properties\": {\n" +
  "      \"vector1\": {\n" +
  "        \"type\": \"knn_vector\",\n" +
  "        \"dimension\": %d,\n" +
  "        \"data_type\": \"float\",\n" +
  "        \"method\": {\n" +
  "          \"engine\": \"lvector\",\n" +
  "          \"name\": \"ivfpq\",\n" +
  "          \"space_type\": \"cosinesimil\",\n" +
  "          \"parameters\": {\n" +
  "            \"m\": %d,\n" +
  "            \"nlist\": 10000,\n" +
  "            \"centroids_use_hnsw\": true,\n" +
  "            \"centroids_hnsw_m\": 48,\n" +
  "            \"centroids_hnsw_ef_construct\": 500,\n" +
  "            \"centroids_hnsw_ef_search\": 200\n" +
  "          }\n" +
  "        }\n" +
  "      },\n" +
  "      \"field1\": {\n" +
  "        \"type\": \"long\"\n" +
  "      }\n" +
  "    }\n" +
  "  }\n" +
  "}"

createIndexJson = String.format(createIndexJson, dim, dim);
indexRequest.setJsonEntity(createIndexJson);
Response response = restClient.performRequest(indexRequest);
String responseBody = EntityUtils.toString(response.getEntity());
System.out.println("responseBody = " + responseBody);

稀疏向量索引

以创建索引vector_sparse_test为例:

String indexName = "vector_sparse_test";

// 创建索引
Request indexRequest = new Request("PUT", "/" + indexName);
indexRequest.setJsonEntity("{\n" +
  " \"settings\" : {\n" +
  "    \"index\": {\n" +
  "      \"number_of_shards\": 2,\n" +
  "      \"knn\": true\n" +
  "    }\n" +
  "  },\n" +
  "  \"mappings\": {\n" +
  "    \"_source\": {\n" +
  "      \"excludes\": [\"vector1\"]\n" +
  "    },\n" +
  "    \"properties\": {\n" +
  "      \"vector1\": {\n" +
  "        \"type\": \"knn_vector\",\n" +
  "        \"data_type\": \"sparse_vector\",\n" +
  "        \"method\": {\n" +
  "          \"engine\": \"lvector\",\n" +
  "          \"name\": \"sparse_hnsw\",\n" +
  "          \"space_type\": \"innerproduct\",\n" +
  "          \"parameters\": {\n" +
  "            \"m\": 24,\n" +
  "            \"ef_construction\": 200\n" +
  "         }\n" +
  "       }\n" +
  "      },\n" +
  "      \"field1\": {\n" +
  "        \"type\": \"long\"\n" +
  "      }\n" +
  "    }\n" +
  "  }\n" +
  "}");
Response response = restClient.performRequest(indexRequest);
String responseBody = EntityUtils.toString(response.getEntity());
System.out.println("responseBody = " + responseBody);

数据写入

包含向量列的索引的数据写入方式与普通索引的数据写入方式一致。

单条写入

以写入索引vector_test为例:

String indexName = "vector_test";
String documentId = "1";
String jsonString = "{ \"field1\": 1, \"vector1\": [1.2, 1.3, 1.4] }";
Request request = new Request(
  "PUT",  // 指定了文档ID时使用PUT方法
  "/" + indexName + "/_doc/" + documentId);
request.setJsonEntity(jsonString);
response = restClient.performRequest(request);
responseBody = EntityUtils.toString(response.getEntity());
System.out.println("writeDoc responseBody = " + responseBody);

批量写入

// 批量写入数据
Random random = new Random();
Request bulkRequest = new Request("POST", "/_bulk");
StringBuilder bulkJsonBuilder = new StringBuilder();
for (int i = 2; i < 10; i++) {
  // 请将field和value替换为实际业务字段与值
  bulkJsonBuilder.append("{\"index\":{\"_index\":\"").append(indexName).append("\",\"_id\":\"").append(i).append("\"}}").append("\n");
  String value = String.valueOf(random.nextInt());
  float[] floatArray = {random.nextFloat(), random.nextFloat(), random.nextFloat()};
  String floatArrayString = Arrays.toString(floatArray);
  System.out.println(i + " " + value + " " + floatArrayString);
  bulkJsonBuilder.append("{\"field1\":\"").append(value).append("\",\"vector1\":\"").append(floatArrayString).append("\"}").append("\n");
}
bulkRequest.setJsonEntity(bulkJsonBuilder.toString());
response = restClient.performRequest(bulkRequest);
responseBody = EntityUtils.toString(response.getEntity());
System.out.println("bulkWriteDoc responseBody = " + responseBody);

// 发送刷新请求,强制已写数据可见
response = restClient.performRequest(new Request("POST", "/" + indexName + "/_refresh"));
responseBody = EntityUtils.toString(response.getEntity());
System.out.println("responseBody = " + responseBody);

稀疏向量写入

写入方式与上述方式相同,但需要修改vector1的格式。

// 写入单条数据
String documentId = "1";
String jsonString = "{ \"field1\": 1, \"vector1\": {\"indices\": [10, 12, 16], \"values\": [1.2, 1.3, 1.4]} }";
Request request = new Request(
  "PUT",  // 指定了文档ID时使用PUT方法
  "/" + indexName + "/_doc/" + documentId);
request.setJsonEntity(jsonString);
response = restClient.performRequest(request);
responseBody = EntityUtils.toString(response.getEntity());
System.out.println("writeDoc responseBody = " + responseBody);

索引构建

重要
  • 除ivfpq索引,其他类型索引创建时index.knn.offline.construction默认为false,即在线索引,无需手动构建。

  • 在触发ivfpq索引构建前需注意:在创建ivfpq索引时,需将index.knn.offline.construction显式指定为true,且在发起构建时务必确保已写入足够的数据量,必须大于256条且超过nlist的30倍。

  • 手动触发索引构建完成后,后续可正常写入和查询,无需再次构建索引

触发构建

以构建索引vector_ivfpq_test为例:

// 构建索引
Request buildIndexRequest = new Request("POST", "/_plugins/_vector/index/build");
String jsonString = "{ \"indexName\": \"vector_ivfpq_test\", \"fieldName\": \"vector1\", \"removeOldIndex\": \"true\" }";
response = restClient.performRequest(buildIndexRequest);
responseBody = EntityUtils.toString(response.getEntity());
System.out.println("buildIndex responseBody = " + responseBody);

参数说明

参数

是否必填

说明

indexName

表名称,例如vector_ivfpq_test

fieldName

针对哪个字段构建索引,例如vector1

removeOldIndex

构建索引时,是否删除旧的索引。取值如下:

  • true:在触发构建时,会删除旧的索引数据,在构建完成后才能进行knn查询。

    重要

    实际业务使用,建议设置为true

  • false(默认值):会保留旧的索引,但会影响检索性能。

返回结果如下:

{
  "payload": ["default_vector_ivfpq_test_vector1"]
}

返回结果为索引构建生成的taskId

查看索引状态

// 查看索引状态
Request buildIndexRequest = new Request("GET", "/_plugins/_vector/index/tasks");
String jsonString = "{ \"indexName\": \"vector_ivfpq_test\", \"fieldName\": \"vector1\", \"taskIds\": \"[default_vector_ivfpq_test_vector1]\" }";
buildIndexRequest.setJsonEntity(jsonString);
Response response = restClient.performRequest(buildIndexRequest);
String responseBody = EntityUtils.toString(response.getEntity());
System.out.println("queryBuildIndex responseBody = " + responseBody);

其中,taskIds为触发构建时生成的taskId,可以填写空的数组,例如\"taskIds\": \"[]\",效果与上述已填写taskIds的效果一致。

返回结果如下:

{
  "payload": ["task: default_vector_ivfpq_test_vector1, stage: FINISH, innerTasks: xxx, info: finish building"]
}

其中,stage表示构建状态,共包含以下几种状态:START(开始构建)、TRAIN(训练阶段)、BUILDING(构建中)、ABORT(终止构建)、FINISH(构建完成)和FAIL(构建失败)。

说明

ABORT通常调用/index/abort接口来终止索引构建。

终止构建

终止索引的构建流程。状态为FINISH的索引不支持调用该方法。

// 终止构建索引
Request buildIndexRequest = new Request("POST", "/_plugins/_vector/index/tasks/abort");
String jsonString = "{ \"indexName\": \"vector_ivfpq_test\", \"fieldName\": \"vector1\", \"taskIds\": \"[\"default_vector_ivfpq_test_vector1\"]\" }";
buildIndexRequest.setJsonEntity(jsonString);
Response response = restClient.performRequest(buildIndexRequest);
String responseBody = EntityUtils.toString(response.getEntity());
System.out.println("abortBuildIndex responseBody = " + responseBody);

返回结果如下:

{
  "payload":["Task: default_vector_ivfpq_test_vector1 remove success"]
}

数据查询

纯向量数据查询

纯向量数据的查询可以通过knn结构实现。

// knn查询
Request searchRequest = new Request("GET", "/" + indexName + "/_search");
jsonString = "{"
  + "\"size\": 10,"
  + "\"query\": {"
  +     "\"knn\": {"
  +         "\"vector1\": {"
  +             "\"vector\": [2.2, 2.3, 2.4],"
  +             "\"k\": 10"
  +         "}"
  +     "}"
  + "},"
  + "\"ext\": {\"lvector\": {\"min_score\": \"0.1\"}}"
  + "}";
searchRequest.setJsonEntity(jsonString);
response = restClient.performRequest(searchRequest);
responseBody = EntityUtils.toString(response.getEntity());
System.out.println("search responseBody = " + responseBody);

参数说明

参数结构

参数

是否必填

说明

knn

vector

查询时使用的向量。

k

返回最相似的K个数据。

重要

在纯向量检索场景中,建议将sizek设置为相同的值。

ext

lvector.min_score

相似度阈值,要求返回的向量得分大于该值。返回的向量得分范围为[0,1]。

取值范围:[0,+inf]。默认值为0

lvector.filter_type

融合查询使用的模式。取值如下:

  • pre_filter:先过滤结构化数据,再查询向量数据。

  • post_filter:先查询向量数据,再过滤结构化数据。

默认值为空。

lvector.ef_search

HNSW算法中,索引构建时动态列表的长度。只能用于HNSW算法。

取值范围:[1,1000]。默认值为100

lvector.nprobe

要查询的聚类单元(cluster units)的数量。请根据您的召回率要求,对该参数的值进行调整已达到理想效果。值越大,召回率越高,搜索性能越低。

取值范围:[1,method.parameters.nlist]。无默认值。

重要

仅适用于ivfpq算法。

lvector.reorder_factor

使用原始向量创建重排序(reorder)。ivfpq算法计算的距离为量化后的距离,会有一定的精度损失,需要使用原始向量进行重排序。比例为k * reorder_factor ,通常用于提升召回精度,但会增加性能开销。

取值范围:[1,200]。默认值为10

重要
  • 仅适用于ivfpq算法。

  • k值较小时可以设置为5,如果k大于100,直接设置为1即可。

以hnsw索引vector_test为例,返回结果如下:

单击展开返回结果

{
    "took": 65,
    "timed_out": false,
    "terminated_early": false,
    "num_reduce_phases": 0,
    "_shards": {
        "total": 2,
        "successful": 2,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 10,
            "relation": "eq"
        },
        "max_score": 0.25,
        "hits": [
            {
                "_index": "vector_test",
                "_id": "1",
                "_score": 0.25
            },
            {
                "_index": "vector_test",
                "_id": "32",
                "_score": 0.14561969
            },
            {
                "_index": "vector_test",
                "_id": "122",
                "_score": 0.13761099
            },
            {
                "_index": "vector_test",
                "_id": "80",
                "_score": 0.13138853
            },
            {
                "_index": "vector_test",
                "_id": "12",
                "_score": 0.12602884
            },
            {
                "_index": "vector_test",
                "_id": "120",
                "_score": 0.123480916
            },
            {
                "_index": "vector_test",
                "_id": "39",
                "_score": 0.12126313
            },
            {
                "_index": "vector_test",
                "_id": "27",
                "_score": 0.117812514
            },
            {
                "_index": "vector_test",
                "_id": "29",
                "_score": 0.11756193
            },
            {
                "_index": "vector_test",
                "_id": "81",
                "_score": 0.11755075
            }
        ]
    }
}

返回指定字段

如果需要在查询时返回指定字段,可以指定 "_source": ["field1", "field2"] 或使用"_source": true 返回非向量的全部字段。以查询索引vector_test为例,使用方法如下:

// knn查询
Request searchRequest = new Request("GET", "/" + indexName + "/_search");
jsonString = "{"
  + "\"size\": 10,"
  + "\"_source\": [\"field1\"],"
  + "\"query\": {"
  +     "\"knn\": {"
  +         "\"vector1\": {"
  +             "\"vector\": [2.2, 2.3, 2.4],"
  +             "\"k\": 10"
  +         "}"
  +     "}"
  + "},"
  + "\"ext\": {\"lvector\": {\"min_score\": \"0.1\"}}"
  + "}";
searchRequest.setJsonEntity(jsonString);
response = restClient.performRequest(searchRequest);
responseBody = EntityUtils.toString(response.getEntity());
System.out.println("search responseBody = " + responseBody);

返回结果如下:

单击展开返回结果

{
  "took": 31,
  "timed_out": false,
  "terminated_early": false,
  "num_reduce_phases": 0,
  "_shards": {
    "total": 2,
    "successful": 2,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 10,
      "relation": "eq"
    },
    "max_score": 0.25,
    "hits": [
      {
        "_index": "vector_test",
        "_id": "1",
        "_score": 0.25,
        "_source": {
          "field1": 1
        }
      },
      {
        "_index": "vector_test",
        "_id": "67",
        "_score": 0.15348388,
        "_source": {
          "field1": "-487556052"
        }
      },
      {
        "_index": "vector_test",
        "_id": "83",
        "_score": 0.1416535,
        "_source": {
          "field1": "1733994439"
        }
      },
      {
        "_index": "vector_test",
        "_id": "43",
        "_score": 0.13119161,
        "_source": {
          "field1": "-747555255"
        }
      },
      {
        "_index": "vector_test",
        "_id": "54",
        "_score": 0.1267109,
        "_source": {
          "field1": "-1544683361"
        }
      },
      {
        "_index": "vector_test",
        "_id": "110",
        "_score": 0.12533507,
        "_source": {
          "field1": "882740211"
        }
      },
      {
        "_index": "vector_test",
        "_id": "48",
        "_score": 0.124014825,
        "_source": {
          "field1": "-513152633"
        }
      },
      {
        "_index": "vector_test",
        "_id": "40",
        "_score": 0.12398689,
        "_source": {
          "field1": "1360426997"
        }
      },
      {
        "_index": "vector_test",
        "_id": "60",
        "_score": 0.12019993,
        "_source": {
          "field1": "10377260"
        }
      },
      {
        "_index": "vector_test",
        "_id": "61",
        "_score": 0.12009792,
        "_source": {
          "field1": "-2097991339"
        }
      }
    ]
  }
}

hsnw算法查询

// knn查询
Request searchRequest = new Request("GET", "/" + indexName + "/_search");
jsonString = "{"
  + "\"size\": 10,"
  + "\"query\": {"
  +     "\"knn\": {"
  +         "\"vector1\": {"
  +             "\"vector\": [2.2, 2.3, 2.4],"
  +             "\"k\": 10"
  +         "}"
  +     "}"
  + "},"
  + "\"ext\": {\"lvector\": {\"ef_search\": \"100\"}}"
  + "}";
searchRequest.setJsonEntity(jsonString);
response = restClient.performRequest(searchRequest);
responseBody = EntityUtils.toString(response.getEntity());
System.out.println("search responseBody = " + responseBody);

ivfpq算法查询

// knn查询
Request searchRequest = new Request("GET", "/" + indexName + "/_search");
jsonString = "{"
  + "\"size\": 10,"
  + "\"query\": {"
  +     "\"knn\": {"
  +         "\"vector1\": {"
  +             "\"vector\": [2.2, 2.3, 2.4],"
  +             "\"k\": 10"
  +         "}"
  +     "}"
  + "},"
  + "\"ext\": {\"lvector\": {\"nprobe\": \"60\", \"reorder_factor\": \"2\"}}"
  + "}";
searchRequest.setJsonEntity(jsonString);
response = restClient.performRequest(searchRequest);
responseBody = EntityUtils.toString(response.getEntity());
System.out.println("search responseBody = " + responseBody);
重要
  • 如果k值相对较大,如大于100,将reorder_factor的值设置为1即可。

  • 当nlist的值为10000时,可以先将nprobe设置为60,查看检索效果。如果想继续提升召回率,可适当增加nprobe的值,如80、100、120、140、160,该值引起的性能损耗远小于reorder_factor,但也不适宜设置过大。

稀疏向量查询

查询方式与上述方式相同,但需要修改vector1的格式。

// knn查询
Request searchRequest = new Request("GET", "/" + indexName + "/_search");
jsonString = "{"
  + "\"size\": 10,"
  + "\"query\": {"
  +     "\"knn\": {"
  +         "\"vector1\": {"
  +             "\"vector\": {\"indices\": [10, 45, 16], \"values\": [0.5, 0.5, 0.2]},"
  +             "\"k\": 10"
  +         "}"
  +     "}"
  + "}"
  + "}";
searchRequest.setJsonEntity(jsonString);
response = restClient.performRequest(searchRequest);
responseBody = EntityUtils.toString(response.getEntity());
System.out.println("search responseBody = " + responseBody);

融合查询

向量列的查询可与普通列的查询条件结合,并返回综合的查询结果。在实际业务使用时, Post_Filter近似查询通常能获取更相似的检索结果。

Pre-Filter近似查询

通过在knn查询结构内部添加过滤器filter,并指定filter_type参数的值为pre_filter,可实现先过滤结构化数据,再查询向量数据。

说明

目前结构化过滤数据的上限为10,000条。

// knn查询
Request searchRequest = new Request("GET", "/" + indexName + "/_search");
String jsonString = jsonString = "{"
  + "\"size\": 10,"
  + "\"query\": {"
  + "  \"knn\": {"
  + "    \"vector1\": {"
  + "      \"vector\": [2.2, 2.3, 2.4],"
  + "      \"filter\": {"
  + "        \"range\": {"
  + "          \"field1\": {"
  + "            \"gte\": 0"
  + "          }"
  + "        }"
  + "      },"
  + "      \"k\": 10"
  + "    }"
  + "  }"
  + "},"
  + "\"ext\": {\"lvector\": {\"filter_type\": \"pre_filter\"}}"
  + "}";
searchRequest.setJsonEntity(jsonString);
Response response = restClient.performRequest(searchRequest);
String responseBody = EntityUtils.toString(response.getEntity());
System.out.println("search responseBody = " + responseBody);

Post-Filter近似查询

通过在knn查询结构内部添加过滤器filter,并指定filter_type参数的值为post_filter,可实现先查询向量数据,再过滤结构化数据。

说明

在使用Post_Filter近似查询时,可以适当将k的值设置大一些,以便获取更多的向量数据再进行过滤。

// knn查询
Request searchRequest = new Request("GET", "/" + indexName + "/_search");
String jsonString = "{\n" +
  "  \"size\": 10,\n" +
  "  \"query\": {\n" +
  "    \"knn\": {\n" +
  "      \"vector1\": {\n" +
  "        \"vector\": [2.2, 2.3, 2.4],\n" +
  "        \"filter\": {\n" +
  "          \"range\": {\n" +
  "            \"field1\": {\n" +
  "              \"gte\": 0\n" +
  "            }\n" +
  "          }\n" +
  "        },\n" +
  "        \"k\": 1000\n" +
  "      }\n" +
  "    }\n" +
  "  },\n" +
  "  \"ext\": {\n" +
  "    \"lvector\": {\n" +
  "      \"filter_type\": \"post_filter\"\n" +
  "    }\n" +
  "  }\n" +
  "}";
searchRequest.setJsonEntity(jsonString);
Response response = restClient.performRequest(searchRequest);
String responseBody = EntityUtils.toString(response.getEntity());
System.out.println("search responseBody = " + responseBody);

在使用Post_Filter近似查询时需要适当放大k的值,如果使用ivfpq算法,还需要调整reorder_factor的值。具体使用如下:

// knn查询
Request searchRequest = new Request("GET", "/" + indexName + "/_search");
String jsonString = "{\n" +
  "  \"size\": 10,\n" +
  "  \"query\": {\n" +
  "    \"knn\": {\n" +
  "      \"vector1\": {\n" +
  "        \"vector\": [2.2, 2.3, 2.4],\n" +
  "        \"filter\": {\n" +
  "          \"range\": {\n" +
  "            \"field1\": {\n" +
  "              \"gte\": 0\n" +
  "            }\n" +
  "          }\n" +
  "        },\n" +
  "        \"k\": 1000\n" +
  "      }\n" +
  "    }\n" +
  "  },\n" +
  "  \"ext\": {\n" +
  "    \"lvector\": {\n" +
  "      \"filter_type\": \"post_filter\",\n" +
  "      \"nprobe\": \"60\",\n" +
  "      \"reorder_factor\": \"1\"\n" +
  "    }\n" +
  "  }\n" +
  "}";
searchRequest.setJsonEntity(jsonString);
Response response = restClient.performRequest(searchRequest);
String responseBody = EntityUtils.toString(response.getEntity());
System.out.println("search responseBody = " + responseBody);
重要
  • 在Post_Filter近似查询场景中,可以将k值放大至10,000、最大控制在20,000之内,从而将处理时延控制在百毫秒之内。如果k值相对较大,将reorder_factor的值设置为1即可。

  • 当nlist的值为10000时,可以先将nprobe设置为60,查看检索效果。如果检索效果不理想,可适当增加nprobe的值,如80、100、120、140、160,该值引起的性能损耗远小于reorder_factor,但也不宜设置过大。

您也可以通过post_filter添加过滤条件,实现Post-Filter近似查询。

// knn查询
Request searchRequest = new Request("GET", "/" + indexName + "/_search");
String jsonString ="{\n" +
  "  \"size\": 10,\n" +
  "  \"query\": {\n" +
  "    \"knn\": {\n" +
  "      \"vector1\": {\n" +
  "        \"vector\": [2.2, 2.3, 2.4],\n" +
  "        \"k\": 10\n" +
  "      }\n" +
  "    }\n" +
  "  },\n" +
  "  \"post_filter\": {\n" +
  "    \"range\": {\n" +
  "      \"field1\": {\n" +
  "        \"gte\": 0\n" +
  "      }\n" +
  "    }\n" +
  "  }\n" +
  "}";
searchRequest.setJsonEntity(jsonString);
Response response = restClient.performRequest(searchRequest);
String responseBody = EntityUtils.toString(response.getEntity());
System.out.println("search responseBody = " + responseBody);

常规用法

  • 查询所有索引及其数据量。

    Request request = new Request("GET", "/_cat/indices?v");
    Response response = restClient.performRequest(request);
    String responseBody = EntityUtils.toString(response.getEntity());
    System.out.println(responseBody);

    返回结果如下:

    health status index        uuid        pri rep docs.count docs.deleted store.size pri.store.size
    green  open   vector_test  vector_test 2   0          2            0      6.8kb          6.8kb
  • 查询指定索引的数据量。

    Request request = new Request("GET", "/" + indexName + "/_count");
    Response response = restClient.performRequest(request);
    String responseBody = EntityUtils.toString(response.getEntity());
    System.out.println(responseBody);

    返回结果如下:

    {
      "count" : 2,
      "_shards" : {
        "total" : 2,
        "successful" : 2,
        "skipped" : 0,
        "failed" : 0
      }
    }
  • 查看索引创建信息。

    Request request = new Request("GET", "/" + indexName);
    Response response = restClient.performRequest(request);
    String responseBody = EntityUtils.toString(response.getEntity());
    System.out.println(responseBody);

    返回结果如下:

    单击展开返回结果

    {
      "vector_test" : {
        "aliases" : { },
        "mappings" : {
          "_source" : {
            "excludes" : [
              "vector1"
            ]
          },
          "properties" : {
            "field1" : {
              "type" : "long"
            },
            "vector1" : {
              "type" : "knn_vector",
              "dimension" : 3,
              "data_type" : "float",
              "method" : {
                "engine" : "lvector",
                "space_type" : "l2",
                "name" : "hnsw",
                "parameters" : {
                  "ef_construction" : 200,
                  "m" : 24
                }
              }
            }
          }
        },
        "settings" : {
          "index" : {
            "search" : {
              "slowlog" : {
                "level" : "DEBUG",
                "threshold" : {
                  "fetch" : {
                    "warn" : "1s",
                    "trace" : "200ms",
                    "debug" : "500ms",
                    "info" : "800ms"
                  },
                  "query" : {
                    "warn" : "10s",
                    "trace" : "500ms",
                    "debug" : "1s",
                    "info" : "5s"
                  }
                }
              }
            },
            "indexing" : {
              "slowlog" : {
                "level" : "DEBUG",
                "threshold" : {
                  "index" : {
                    "warn" : "10s",
                    "trace" : "500ms",
                    "debug" : "2s",
                    "info" : "5s"
                  }
                }
              }
            },
            "number_of_shards" : "2",
            "provided_name" : "vector_test",
            "knn" : "true",
            "creation_date" : "1727169417350",
            "number_of_replicas" : "0",
            "uuid" : "vector_test",
            "version" : {
              "created" : "136287927"
            }
          }
        }
      }
    }
  • 删除整个索引。

    Request deleteIndexRequest = new Request("DELETE", "/" + indexName);
    Response response = restClient.performRequest(deleteIndexRequest);
    String responseBody = EntityUtils.toString(response.getEntity());
    System.out.println("delIndex responseBody = " + responseBody);
  • 通过查询删除。

    request = new Request("POST", "/" + indexName + "/_delete_by_query");
    jsonString = "{\n" +
      "    \"query\": {\n" +
      "      \"term\": {\n" +
      "        \"field1\": 1\n" +
      "      }\n" +
      "    }\n" +
      "}";
    request.setJsonEntity(jsonString);
    response = restClient.performRequest(searchRequest);
    responseBody = EntityUtils.toString(response.getEntity());
    System.out.println("deleteByQuery responseBody = " + responseBody);