百炼为通义千问视觉模型提供了与OpenAI兼容的使用方式。如果您之前使用OpenAI SDK或者其他OpenAI兼容接口(例如langchain_openai SDK),或者HTTP方式调用OpenAI的视觉模型服务,只需在原有框架下调整API-KEY、BASE_URL、model等参数,就可以直接使用通义千问视觉模型。
兼容OpenAI需要信息
BASE_URL
BASE_URL表示模型服务的网络访问点或地址。通过该地址,您可以访问服务提供的功能或数据。在Web服务或API的使用中,BASE_URL通常对应于服务的具体操作或资源的URL。当您使用OpenAI兼容接口来使用通义千问视觉模型服务时,需要配置BASE_URL。
当您通过OpenAI SDK或其他OpenAI兼容的SDK调用时,需要配置的BASE_URL如下:
https://dashscope.aliyuncs.com/compatible-mode/v1
当您通过HTTP请求调用时,需要配置的完整访问endpoint如下:
POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions
获取API-KEY
您需要开通百炼模型服务并获得API-KEY,详情请参考:获取API-KEY。
支持的模型列表
当前OpenAI兼容接口支持的通义千问系列模型如下表所示。
通义千问VL模型按输入和输出的总Token数进行计费。图像转换为Token的规则如下:分辨率为512*512像素的图像约等于334个Token,其他分辨率的图像按比例换算;最小单位为28x28像素,即每28x28像素对应一个Token,如果图像的长或宽不是28的整数倍,则向上取整至28的整数倍进行计算;一张图最少4个Token,最多1280个Token(qwen-vl-max、qwen-vl-max-0809、qwen-vl-plus-0809模型可接受单张图片的最大输入为 16384 个 Token)。
模型名称 | 说明 | 上下文长度 | 最大输入 | 最大输出 | 输入输出单价 | 免费额度 |
(Token数) | (每千Token) | |||||
qwen-vl-max | 该模型为稳定版本。 本次更新上下文支持32k,增强图像理解和视频推理能力,可以更好地识别图片中的多语言文字和手写体的文字。 | 32,000 | 30,000 | 2,000 | 0.02元 | 100万Token 有效期:百炼开通后30天内 2024年9月19日0点后开通百炼的用户,免费额度有效期为180天。 |
qwen-vl-max-latest | qwen-vl-max模型的最新版本。 | 0.02元 | 100万Token 有效期:百炼开通后30天内 2024年9月19日0点后开通百炼的用户,免费额度有效期为180天。 | |||
qwen-vl-max-2024-08-09 (qwen-vl-max-0809) | qwen-vl-max的2024年8月9日快照版本,快照版本维护到下个快照版本发布时间(待定)后一个月。 | 0.02元 | 100万Token 有效期:已开通百炼的用户,自8月23日0点起30天内有效。 新开通百炼的用户,在开通后180天内有效。 | |||
qwen-vl-plus-latest | qwen-vl-plus模型的最新版本。 | 0.008元 | 100万Token 有效期:百炼开通后30天内 2024年9月19日0点后开通百炼的用户,免费额度有效期为180天。 | |||
qwen-vl-plus-2024-08-09 (qwen-vl-plus-0809) | qwen-vl-plus的2024年8月9日快照版本。 | 0.008元 | 100万Token 有效期:百炼开通后30天内 2024年9月19日0点后开通百炼的用户,免费额度有效期为180天。 | |||
qwen-vl-max-2024-02-01 (qwen-vl-max-0201) | qwen-vl-max的2024年2月1日快照版本,快照版本维护到下个快照版本发布时间(待定)后一个月。 | 8,000 | 6,000 | 2,000 | 0.02元 | |
qwen-vl-plus | 该模型为稳定版本。 大幅提升细节识别能力和文字识别能力,支持超百万像素分辨率和任意长宽比规格的图像。在广泛的视觉任务中提供卓越性能。 | 0.008元 |
通过OpenAI SDK调用
前提条件
请确保您的计算机上安装了Python环境。
请安装最新版OpenAI SDK。
# 如果下述命令报错,请将pip替换为pip3 pip install -U openai
您需要开通百炼模型服务并获得API-KEY,详情请参考:获取API-KEY。
我们推荐您将API-KEY配置到环境变量中以降低API-KEY的泄露风险,配置方法可参考配置API-KEY到环境变量。您也可以在代码中配置API-KEY,但是泄露风险会提高。
使用方式
您可以参考以下示例来使用OpenAI SDK访问通义千问视觉模型。
非流式输出
您可以输入单张或多张图片。
from openai import OpenAI
import os
def get_response():
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen-vl-plus",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "这些是什么"
},
{
"type": "image_url",
"image_url": {
"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"
}
},
{
"type": "image_url",
"image_url": {
"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/tiger.png"
}
}
]
}
]
)
print(completion.model_dump_json())
if __name__=='__main__':
get_response()
运行代码可以获得以下结果:
{
"id": "chatcmpl-3edf4830-fb91-90d2-bec4-d3e97a5910ea",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"message": {
"content": "图1中是一名女子和她的宠物狗在沙滩上互动,狗狗抬起前爪似乎想要握手。\n图2是CG渲染的一张老虎的图片。",
"role": "assistant",
"function_call": null,
"tool_calls": null
}
}
],
"created": 1724638019,
"model": "qwen-vl-plus",
"object": "chat.completion",
"service_tier": null,
"system_fingerprint": null,
"usage": {
"completion_tokens": 33,
"prompt_tokens": 2509,
"total_tokens": 2542
}
}
流式输出
from openai import OpenAI
import os
def get_response():
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen-vl-plus",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "这是什么"
},
{
"type": "image_url",
"image_url": {
"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"
}
}
]
}
],
stream=True,
stream_options={"include_usage":True}
)
for chunk in completion:
print(chunk.model_dump())
if __name__=='__main__':
get_response()
运行代码可以获得以下结果:
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '', 'function_call': None, 'role': 'assistant', 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '图', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '中', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '是一名', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '女子和她的狗在', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '沙滩上互动。狗狗坐在地上,', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '伸出爪子像是要握手或者击', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '掌的样子。这名女士穿着格子', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '衬衫,似乎正在与狗狗进行亲密', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '的接触,并且面带微笑。', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '背景是海洋和日出或日', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '落时分的天空。这是一', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '幅描绘人与宠物之间温馨时刻', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [{'delta': {'content': '的画面。', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': 'stop', 'index': 0, 'logprobs': None}], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-6cf91cc7-1121-9977-b4bc-5e7d1fbfd693', 'choices': [], 'created': 1721823365, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': {'completion_tokens': 75, 'prompt_tokens': 1276, 'total_tokens': 1351}}
本地文件
当前API请求负载限制在6M以下。所以VL模型通过base64格式输入的字符串也不能超过此限制。对应的输入图片原始大小需小于4.5Mb。
qwen-vl模型支持通过base64编码的图片输入,您可以将本地图片转换为base64字符串后进行调用。示例图片:test.png
from openai import OpenAI
import os
import base64
# base 64 编码格式
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def get_response(image_path):
base64_image = encode_image(image_path)
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen-vl-plus",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "这是什么"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
],
stream=True,
stream_options={"include_usage":True}
)
for chunk in completion:
print(chunk.model_dump())
if __name__=='__main__':
get_response("test.png")
如果需要非流式输出,将stream相关配置参数去除,并直接打印completion即可。
返回结果
{'id': 'chatcmpl-42012997-2e91-9579-9da1-8806aa79db13', 'choices': [{'delta': {'content': '', 'function_call': None, 'role': 'assistant', 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1724728778, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-42012997-2e91-9579-9da1-8806aa79db13', 'choices': [{'delta': {'content': '这', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1724728778, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-42012997-2e91-9579-9da1-8806aa79db13', 'choices': [{'delta': {'content': '是一', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1724728778, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-42012997-2e91-9579-9da1-8806aa79db13', 'choices': [{'delta': {'content': '只', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1724728778, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-42012997-2e91-9579-9da1-8806aa79db13', 'choices': [{'delta': {'content': '在天空中飞翔的鹰。它有着广阔的翅膀,正在', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1724728778, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-42012997-2e91-9579-9da1-8806aa79db13', 'choices': [{'delta': {'content': '翱翔于云层之间。这种', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1724728778, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-42012997-2e91-9579-9da1-8806aa79db13', 'choices': [{'delta': {'content': '鸟类通常被认为是力量、自由和雄', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1724728778, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-42012997-2e91-9579-9da1-8806aa79db13', 'choices': [{'delta': {'content': '心壮志的象征,在许多文化', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}], 'created': 1724728778, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-42012997-2e91-9579-9da1-8806aa79db13', 'choices': [{'delta': {'content': '中都具有重要的意义。', 'function_call': None, 'role': None, 'tool_calls': None}, 'finish_reason': 'stop', 'index': 0, 'logprobs': None}], 'created': 1724728778, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': None}
{'id': 'chatcmpl-42012997-2e91-9579-9da1-8806aa79db13', 'choices': [], 'created': 1724728778, 'model': 'qwen-vl-plus', 'object': 'chat.completion.chunk', 'service_tier': None, 'system_fingerprint': None, 'usage': {'completion_tokens': 47, 'prompt_tokens': 1254, 'total_tokens': 1301}}
输入参数配置
输入参数与OpenAI的接口参数对齐,当前已支持的参数如下:
参数 | 类型 | 默认值 | 说明 |
model | string | - | 用户使用的模型名称。 |
messages | array | - | 用户与模型的对话历史。array中的每个元素形式为 |
| float | - | 生成过程中的核采样方法概率阈值,例如,取值为0.8时,仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为(0,1.0],取值越大,生成的随机性越高;取值越小,生成的确定性越高。 |
max_tokens(可选) | integer | - | 指定模型可生成的最大token个数。 |
temperature(可选) | float | - | 用于控制模型回复的随机性和多样性。具体来说,temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值,使得更多的低概率词被选择,生成结果更加多样化;而较低的temperature值则会增强概率分布的峰值,使得高概率词更容易被选择,生成结果更加确定。 取值范围: [0, 2),不建议取值为0,无意义。 |
presence_penalty (可选) | float | - | 用户控制模型生成时整个序列中的重复度。提高presence_penalty时可以降低模型生成的重复度,取值范围[-2.0, 2.0]。 |
seed(可选) | integer | - | 生成时使用的随机数种子,用于控制模型生成内容的随机性。seed支持无符号64位整数。 |
stream(可选) | boolean | False | 用于控制是否使用流式输出。当以stream模式输出结果时,接口返回结果为generator,需要通过迭代获取结果,每次输出为当前生成的增量序列。 |
stop(可选) | string or array | None | stop参数用于实现内容生成过程的精确控制,在模型生成的内容即将包含指定的字符串或token_id时自动停止。stop可以为string类型或array类型。
|
stream_options(可选) | object | None | 该参数用于配置在流式输出时是否展示使用的token数目。只有当stream为True的时候该参数才会激活生效。若您需要统计流式输出模式下的token数目,可将该参数配置为 |
通过langchain_openai SDK调用
前提条件
请确保您的计算机上安装了Python环境。
通过运行以下命令安装langchain_openai SDK。
# 如果下述命令报错,请将pip替换为pip3 pip install -U langchain_openai
您需要开通百炼模型服务并获得API-KEY,详情请参考:获取API-KEY。
我们推荐您将API-KEY配置到环境变量中以降低API-KEY的泄露风险,详情可参考配置API-KEY到环境变量。您也可以在代码中配置API-KEY,但是泄露风险会提高。
使用方式
您可以参考以下示例来通过langchain_openai SDK使用通义千问视觉模型。
非流式输出
非流式输出使用invoke方法实现,请参考以下示例代码:
from langchain_openai import ChatOpenAI
import os
def get_response():
llm = ChatOpenAI(
# 如果您没有配置环境变量,请在此处用您的API Key进行替换
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 填写DashScope base_url
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
model="qwen-vl-plus",
)
messages= [
{
"role": "user",
"content": [
{
"type": "text",
"text": "这是什么"
},
{
"type": "image_url",
"image_url": {
"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"
}
}
]
}
]
response = llm.invoke(messages)
print(response.json(ensure_ascii=False))
if __name__ == "__main__":
get_response()
运行代码,可以得到以下结果:
{
"content": "图中是一名女子和她的狗在沙滩上互动。狗狗坐在地上,伸出爪子像是要握手或者击掌的样子。这名女士穿着格子衬衫,似乎正在与狗狗进行亲密的接触,并且面带微笑。背景是海洋和日出或日落时分的天空。这是一张充满温馨感的照片,展现了人与宠物之间的友谊时刻。",
"additional_kwargs": {},
"response_metadata": {
"token_usage": {
"completion_tokens": 79,
"prompt_tokens": 1276,
"total_tokens": 1355
},
"model_name": "qwen-vl-plus",
"system_fingerprint": null,
"finish_reason": "stop",
"logprobs": null
},
"type": "ai",
"name": null,
"id": "run-c72701d2-e2c6-40a8-9e8b-37b58d53160f-0",
"example": false,
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 1276,
"output_tokens": 79,
"total_tokens": 1355
}
}
流式输出
from langchain_openai import ChatOpenAI
import os
def get_response():
llm = ChatOpenAI(
# 如果您没有配置环境变量,请在此处用您的API Key进行替换
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 填写DashScope base_url
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
model="qwen-plus",
# 通过以下设置,在流式输出的最后一行展示token使用信息
stream_options={"include_usage": True}
)
messages= [
{
"role": "user",
"content": [
{
"type": "text",
"text": "这是什么"
},
{
"type": "image_url",
"image_url": {
"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"
}
}
]
}
]
response = llm.stream(messages)
for chunk in response:
print(chunk.json(ensure_ascii=False))
if __name__ == "__main__":
get_response()
运行以上代码,可得到以下示例结果:
{"content": "", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "这张", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "图片", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "中", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "有一", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "只狗和一个小", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "女孩。狗看起来", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "很友好,可能是", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "宠物,而小女孩", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "似乎在与狗", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "互动或玩耍。", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "这是一幅展示", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "人与动物之间", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "温馨关系的画面。", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "", "additional_kwargs": {}, "response_metadata": {"finish_reason": "stop"}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": null, "tool_call_chunks": []}
{"content": "", "additional_kwargs": {}, "response_metadata": {}, "type": "AIMessageChunk", "name": null, "id": "run-xxx", "example": false, "tool_calls": [], "invalid_tool_calls": [], "usage_metadata": {"input_tokens": 23, "output_tokens": 40, "total_tokens": 63}, "tool_call_chunks": []}
关于输入参数的配置,可以参考输入参数配置,相关参数在ChatOpenAI对象中定义。
通过HTTP接口调用
您可以通过HTTP接口来调用通义千问视觉模型,获得与通过HTTP接口调用OpenAI服务相同结构的返回结果。
前提条件
您需要开通百炼模型服务并获得API-KEY,详情请参考:获取API-KEY。
我们推荐您将API-KEY配置到环境变量中以降低API-KEY的泄露风险,配置方法可参考配置API-KEY到环境变量。您也可以在代码中配置API-KEY,但是泄露风险会提高。
提交接口调用
POST https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions
请求示例
以下示例展示通过CURL
命令来调用API的脚本。
如果您没有配置API-KEY为环境变量,需将$DASHSCOPE_API_KEY更换为您的API-KEY。
非流式输出
curl --location 'https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen-vl-plus",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "这些是什么"
},
{
"type": "image_url",
"image_url": {
"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"
}
},
{
"type": "image_url",
"image_url": {
"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/tiger.png"
}
}
]
}
]
}'
运行命令可得到以下结果:
{
"choices": [
{
"message": {
"content": "图1中是一名女子和她的宠物狗在沙滩上互动,狗狗抬起前爪似乎想要握手。\n图2是CG渲染的一张老虎的图片。",
"role": "assistant"
},
"finish_reason": "stop",
"index": 0,
"logprobs": null
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 2509,
"completion_tokens": 34,
"total_tokens": 2543
},
"created": 1724729556,
"system_fingerprint": null,
"model": "qwen-vl-plus",
"id": "chatcmpl-1abb4eb9-f508-9637-a8ba-ac7fc6f73e53"
}
流式输出
如果您需要使用流式输出,请在请求体中指定stream参数为true。
curl --location 'https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen-vl-plus",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "这是什么"
},
{
"type": "image_url",
"image_url": {
"url": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"
}
}
]
}
],
"stream":true,
"stream_options":{"include_usage":true}
}'
运行命令可得到以下结果:
data: {"choices":[{"delta":{"content":"","role":"assistant"},"index":0,"logprobs":null,"finish_reason":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"finish_reason":null,"delta":{"content":"图"},"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"中"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"是一名"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"女子和她的狗在"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"沙滩上互动。狗狗坐在地上,"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"伸出爪子像是要握手或者击"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"掌的样子。这名女士穿着格子"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"衬衫,似乎正在与狗狗进行亲密"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"的接触,并且面带微笑。"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"背景是海洋和日出或日"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"落时分的天空。这是一"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"delta":{"content":"张充满温馨感的照片,展现了人"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[{"finish_reason":"stop","delta":{"content":"与宠物之间的友谊时刻。"},"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: {"choices":[],"object":"chat.completion.chunk","usage":{"prompt_tokens":1276,"completion_tokens":79,"total_tokens":1355},"created":1724729595,"system_fingerprint":null,"model":"qwen-vl-plus","id":"chatcmpl-4c83f437-303f-907b-9de5-79cac83d6b18"}
data: [DONE]
输入参数的详情请参考输入参数配置。
异常响应示例
在访问请求出错的情况下,输出的结果中会通过 code 和 message 指明出错原因。
{
"error": {
"message": "Incorrect API key provided. ",
"type": "invalid_request_error",
"param": null,
"code": "invalid_api_key"
}
}
状态码说明
错误码 | 说明 |
400 - Invalid Request Error | 输入请求错误,细节请参见具体报错信息。 |
401 - Incorrect API key provided | API key不正确。 |
429 - Rate limit reached for requests | QPS、QPM等超限。 |
429 - You exceeded your current quota, please check your plan and billing details | 额度超限或者欠费。 |
500 - The server had an error while processing your request | 服务端错误。 |
503 - The engine is currently overloaded, please try again later | 服务端负载过高,可重试。 |