PolarDB PostgreSQL版支持子连接下推的查询改写功能,能够提升含有IN/ANY子句的SQL的执行效率。
背景
在PostgreSQL中,ANY类型的子连接(对应IN和ANY子句)会被尝试上拉为半连接(semi join
)。然而,如果与之连接的表是一个无法上拉的子查询,PostgreSQL不支持为其生成参数化路径,只能作为一个整体独立执行,当子查询中的数据量较大时,可能导致整个SQL执行效率显著降低。
例如,以下SQL由于子查询中存在GROUP BY语句导致无法上拉,其执行时间主要在t_big
表的扫描和排序上,并且随着t_big
表规模的增大,执行时间亦相应延长。
EXPLAIN ANALYZE SELECT * FROM (SELECT a, sum(b) b FROM t_big GROUP BY a)v WHERE a IN (SELECT a FROM t_small);
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------
Merge Semi Join (cost=0.55..59523.15 rows=10000 width=12) (actual time=0.064..1237.621 rows=2 loops=1)
Merge Cond: (t_big.a = t_small.a)
-> GroupAggregate (cost=0.42..46910.99 rows=1000000 width=12) (actual time=0.033..1113.615 rows=1000000 loops=1)
Group Key: t_big.a
-> Index Scan using t_big_a_idx on t_big (cost=0.42..31910.99 rows=1000000 width=8) (actual time=0.024..420.575 rows=1000000 loops=1)
-> Index Only Scan using t_small_a_idx on t_small (cost=0.13..12.16 rows=2 width=4) (actual time=0.028..0.030 rows=2 loops=1)
Heap Fetches: 2
Planning Time: 0.256 ms
Execution Time: 1237.700 ms
(9 rows)
如果能够将ANY类型的子连接下推至子查询中,则可以利用子查询中的索引,从而提升执行效率。
EXPLAIN ANALYZE SELECT * FROM (SELECT a, sum(b) b FROM t_big WHERE a IN (SELECT a FROM t_small) GROUP BY a)v;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
GroupAggregate (cost=17.96..17.99 rows=2 width=12) (actual time=0.061..0.064 rows=2 loops=1)
Group Key: t_big.a
-> Sort (cost=17.96..17.96 rows=2 width=8) (actual time=0.054..0.056 rows=2 loops=1)
Sort Key: t_big.a
Sort Method: quicksort Memory: 25kB
-> Nested Loop (cost=1.46..17.95 rows=2 width=8) (actual time=0.031..0.045 rows=2 loops=1)
-> Unique (cost=1.03..1.04 rows=2 width=4) (actual time=0.014..0.017 rows=2 loops=1)
-> Sort (cost=1.03..1.03 rows=2 width=4) (actual time=0.013..0.014 rows=2 loops=1)
Sort Key: t_small.a
Sort Method: quicksort Memory: 25kB
-> Seq Scan on t_small (cost=0.00..1.02 rows=2 width=4) (actual time=0.005..0.006 rows=2 loops=1)
-> Index Scan using t_big_a_idx on t_big (cost=0.42..8.44 rows=1 width=8) (actual time=0.010..0.011 rows=1 loops=2)
Index Cond: (a = t_small.a)
Planning Time: 0.527 ms
Execution Time: 0.143 ms
(15 rows)
前提条件
支持的PolarDB PostgreSQL版的版本如下:
PostgreSQL 14(内核小版本2.0.14.13.28.0及以上)
PostgreSQL 11(内核小版本2.0.11.15.44.0及以上)
应用场景
子连接下推功能适用于IN/ANY子句引用的包含GROUP BY语句的子查询,并且该子查询涉及一个大表。将IN/ANY子句下推至子查询中,能够利用大表的索引,从而减少对大表数据的访问。
子连接下推功能存在以下限制:
IN/ANY子句必须引用一个有GROUP BY语句的子查询,否则当前原生PostgreSQL将直接生成参数化路径,不必使用子连接下推功能。
IN/ANY子句的列必须包含在GROUP BY语句的列中,否则下推后的SQL不等价。
当前查询块不能存在外连接,以确保经过下推后的SQL是等价的。
目前只支持单列的场景。例如:
a in (select a from t)
或者a = any(select a from t)
。目前只支持
SELECT
和CREATE TABLE AS
语句。
使用说明
子连接下推功能受参数控制,相关的参数名称及其作用如下所示:
参数名称 | 描述 |
参数名称 | 描述 |
polar_cbqt_pushdown_sublink | 用于控制子连接下推功能的开关,取值如下:
|
示例
数据准备
CREATE TABLE t_small(a int);
CREATE TABLE t_big(a int, b int, c int);
CREATE INDEX ON t_big(a);
INSERT INTO t_big SELECT i, i, i FROM generate_series(1, 1000000)i;
INSERT INTO t_small VALUES(1), (1000000);
ANALYZE t_small, t_big;
原始查询
在原始查询计划中,t_big.a = t_small.a
连接条件无法作为参数化路径进行下推,导致t_big
表需要进行全表扫描,执行效率很低。
EXPLAIN ANALYZE SELECT * FROM (SELECT a, sum(b) b FROM t_big GROUP BY a)v WHERE a IN (SELECT a FROM t_small);
返回结果如下:
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------
Merge Semi Join (cost=1.46..59510.27 rows=10000 width=12) (actual time=0.049..1239.128 rows=2 loops=1)
Merge Cond: (t_big.a = t_small.a)
-> GroupAggregate (cost=0.42..46909.23 rows=1000000 width=12) (actual time=0.034..1113.324 rows=1000000 loops=1)
Group Key: t_big.a
-> Index Scan using t_big_a_idx on t_big (cost=0.42..31909.23 rows=1000000 width=8) (actual time=0.025..412.650 rows=1000000 loops=1)
-> Sort (cost=1.03..1.03 rows=2 width=4) (actual time=0.012..0.013 rows=2 loops=1)
Sort Key: t_small.a
Sort Method: quicksort Memory: 25kB
-> Seq Scan on t_small (cost=0.00..1.02 rows=2 width=4) (actual time=0.005..0.006 rows=2 loops=1)
Planning Time: 0.219 ms
Execution Time: 1239.208 ms
(11 rows)
通过CBQT开启子连接下推
开启CBQT和子连接下推功能后,将a in (select a from t_small)
子句被下推到子查询中,可以利用连接条件为t_big
表生成参数化路径,扫描的数据大大减少,执行时间明显缩短。
原计划的代价需要大于参数polar_cbqt_cost_threshold
,“子连接下推”查询改写才会应用。
-- 开启CBQT功能
SET polar_enable_cbqt to on;
-- 开启子连接下推功能
SET polar_cbqt_pushdown_sublink to on;
EXPLAIN ANALYZE SELECT * FROM (SELECT a, sum(b) b FROM t_big GROUP BY a)v WHERE a IN (SELECT a FROM t_small);
返回结果如下:
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
GroupAggregate (cost=17.96..17.99 rows=2 width=12) (actual time=0.056..0.059 rows=2 loops=1)
Group Key: t_big.a
-> Sort (cost=17.96..17.96 rows=2 width=8) (actual time=0.051..0.052 rows=2 loops=1)
Sort Key: t_big.a
Sort Method: quicksort Memory: 25kB
-> Nested Loop (cost=1.46..17.95 rows=2 width=8) (actual time=0.032..0.045 rows=2 loops=1)
-> Unique (cost=1.03..1.04 rows=2 width=4) (actual time=0.014..0.018 rows=2 loops=1)
-> Sort (cost=1.03..1.03 rows=2 width=4) (actual time=0.014..0.015 rows=2 loops=1)
Sort Key: t_small.a
Sort Method: quicksort Memory: 25kB
-> Seq Scan on t_small (cost=0.00..1.02 rows=2 width=4) (actual time=0.007..0.008 rows=2 loops=1)
-> Index Scan using t_big_a_idx on t_big (cost=0.42..8.44 rows=1 width=8) (actual time=0.010..0.010 rows=1 loops=2)
Index Cond: (a = t_small.a)
Planning Time: 0.518 ms
Execution Time: 0.141 ms
(15 rows)
通过HINT开启子连接下推
通过HINT的方式,在SQL级别强制开启子连接下推功能,同样将a in (select a from t_small)
子句下推到子查询中,可以利用连接条件为t_big
表生成参数化路径,扫描的数据大大减少,执行时间明显缩短。
-- polar_cbqt_pushdown_sublink参数默认关闭
SET polar_cbqt_pushdown_sublink to off;
EXPLAIN ANALYZE /*+ Set(polar_cbqt_pushdown_sublink force) */ SELECT * FROM (SELECT a, sum(b) b FROM t_big GROUP BY a)v WHERE a IN (SELECT a FROM t_small);
返回结果如下:
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
GroupAggregate (cost=17.96..17.99 rows=2 width=12) (actual time=0.073..0.076 rows=2 loops=1)
Group Key: t_big.a
-> Sort (cost=17.96..17.96 rows=2 width=8) (actual time=0.067..0.069 rows=2 loops=1)
Sort Key: t_big.a
Sort Method: quicksort Memory: 25kB
-> Nested Loop (cost=1.46..17.95 rows=2 width=8) (actual time=0.026..0.040 rows=2 loops=1)
-> Unique (cost=1.03..1.04 rows=2 width=4) (actual time=0.011..0.015 rows=2 loops=1)
-> Sort (cost=1.03..1.03 rows=2 width=4) (actual time=0.010..0.011 rows=2 loops=1)
Sort Key: t_small.a
Sort Method: quicksort Memory: 25kB
-> Seq Scan on t_small (cost=0.00..1.02 rows=2 width=4) (actual time=0.005..0.006 rows=2 loops=1)
-> Index Scan using t_big_a_idx on t_big (cost=0.42..8.44 rows=1 width=8) (actual time=0.009..0.009 rows=1 loops=2)
Index Cond: (a = t_small.a)
Planning Time: 0.788 ms
Execution Time: 0.156 ms
(15 rows)
- 本页导读 (1)
- 背景
- 前提条件
- 应用场景
- 使用说明
- 示例
- 数据准备
- 原始查询
- 通过CBQT开启子连接下推
- 通过HINT开启子连接下推