配置模板:大模型服务平台百炼

更新时间:2025-03-28 07:44:14

阿里云的大模型服务平台百炼是一站式的大模型开发及应用构建平台。本文介绍如何在ES中使用模型推理服务使用百炼平台上的模型。

前提条件

已创建阿里云ES 8.15及以上(内核版本2.1.2以上)的版本实例

步骤一、在百炼平台创建API-KEY

  1. 进入阿里云百炼主页,单击右上角用户管理中的API-KEY,进入API-KEY管理界面。

  2. 在这里可以看到账号的API-KEY相关信息,单击右上角创建我的API-KEY,创建一个新的API-KEY。

  3. 选择对应的归属业务空间后,即可创建新的API-KEY。

  4. 创建完API-KEY后,在API-KEY的管理界面,单击查看,即可查看新建的API-KEY的值以及复制API-KEY。

步骤二、在阿里云Elasticsearch中创建大模型服务平台百炼上的模型推理服务

说明

您可以在阿里云ES实例的Kibana中运行以下代码,以创建模型推理服务。

各类型方法如下:

text_embedding类型
sparse_embedding类型
rerank类型
completion类型
说明

本示例以通用文本向量-v3为例,如要使用text-embedding-v1text-embedding-v2,请替换request.content中的model名称,以及task_settings.parameters中的dimension参数。

创建模型语法模板:

PUT _inference/text_embedding/bailian_embeddings
{
  "service":"alibaba-cloud-custom-model",
  "service_settings":{
    "secret_parameters":{
      "DASHSCOPE_API_KEY":"<替换为您的API_KEY>"
    },
    "url":"https://dashscope.aliyuncs.com",
    "path":{
      "/compatible-mode/v1/embeddings":{
        "POST":{
          "headers":{
            "Authorization": "Bearer ${DASHSCOPE_API_KEY}",
            "Content-Type": "application/json;charset=utf-8"
          },
          "request":{
            "format":"string",
            "content":"""
            {
              "model": "text-embedding-v3",
              "input": ${input},
              "dimension": "${dimension}",
              "encoding_format": "${encoding_format}"
            }
            """
          },
          "response":{
            "json_parser":{
              "text_embeddings":"$.data[*].embedding"
            }
          }
        }
      }
    }
  },
  "task_settings":{
    "parameters":{
      "dimension":"1024",
      "encoding_format":"float"
    }
  }
}

示例:

PUT _inference/text_embedding/bailian_embeddings
{
  "service":"alibaba-cloud-custom-model",
  "service_settings":{
    "secret_parameters":{
      "DASHSCOPE_API_KEY":"sk-xxx"
    },
    "url":"https://dashscope.aliyuncs.com",
    "path":{
      "/compatible-mode/v1/embeddings":{
        "POST":{
          "headers":{
            "Authorization": "Bearer ${DASHSCOPE_API_KEY}",
            "Content-Type": "application/json;charset=utf-8"
          },
          "request":{
            "format":"string",
            "content":"""
            {
              "model": "text-embedding-v3",
              "input": ${input},
              "dimension": "${dimension}",
              "encoding_format": "${encoding_format}"
            }
            """
          },
          "response":{
            "json_parser":{
              "text_embeddings":"$.data[*].embedding"
            }
          }
        }
      }
    }
  },
  "task_settings":{
    "parameters":{
      "dimension":"1024",
      "encoding_format":"float"
    }
  }
}

调用模型:

POST _inference/text_embedding/bailian_embeddings
{
  "input":[
        "风急天高猿啸哀",
        "渚清沙白鸟飞回", 
        "无边落木萧萧下", 
        "不尽长江滚滚来"
        ]
}

Response(响应结果):

{
  "text_embedding": [
    {
      "embedding": [
        -0.029477125,
        0.058726918,
        ...
      ]
    },
    {
      "embedding": [
        -0.012646919,
        0.08031367,
        ...
      ]
    },
    {
      "embedding": [
        -0.05844187,
        0.09235354,
        ...
      ]
    },
    {
      "embedding": [
        -0.017527938,
        0.058592297,
        ...
      ]
    }
  ]
}

创建模型语法模板:

PUT _inference/sparse_embedding/bailian_sparse_emb
{
  "service":"alibaba-cloud-custom-model",
  "service_settings":{
    "secret_parameters":{
      "api_key":"<替换为您的API_KEY>"
    },
    "url":"https://dashscope.aliyuncs.com",
    "path":{
      "/api/v1/services/embeddings/text-embedding/text-embedding":{
        "POST":{
          "headers":{
            "Authorization": "Bearer ${API_KEY}"
          },
          "request":{
            "format":"string",
            "content":"""
            {
              "model": "text-embedding-v3",
              "input": {
                "texts": ${input}
              },
              "parameters": {
                "dimension": "${dimension}",
                "output_type": "${output_type}"
              }
            }
            """
          },
          "response":{
            "json_parser":{
              "sparse_result":{
                "path":"$.output.embeddings[*]",
                "value":{
                  "sparse_token":"$.sparse_embedding[*].token",
                  "sparse_weight":"$.sparse_embedding[*].value"   
                }
              }
            }
          }
        }
      }
    }
  },
  "task_settings":{
    "parameters":{
      "dimension":1024,
      "output_type":"sparse"
    }
  }
}

示例:

PUT _inference/sparse_embedding/bailian_sparse_emb
{
  "service":"alibaba-cloud-custom-model",
  "service_settings":{
    "secret_parameters":{
      "api_key":"sk-xxx"
    },
    "url":"https://dashscope.aliyuncs.com",
    "path":{
      "/api/v1/services/embeddings/text-embedding/text-embedding":{
        "POST":{
          "headers":{
            "Authorization": "Bearer ${API_KEY}"
          },
          "request":{
            "format":"string",
            "content":"""
            {
              "model": "text-embedding-v3",
              "input": {
                "texts": ${input}
              },
              "parameters": {
                "dimension": "${dimension}",
                "output_type": "${output_type}"
              }
            }
            """
          },
          "response":{
            "json_parser":{
              "sparse_result":{
                "path":"$.output.embeddings[*]",
                "value":{
                  "sparse_token":"$.sparse_embedding[*].token",
                  "sparse_weight":"$.sparse_embedding[*].value"   
                }
              }
            }
          }
        }
      }
    }
  },
  "task_settings":{
    "parameters":{
      "dimension":1024,
      "output_type":"sparse"
    }
  }
}

调用模型:

POST _inference/sparse_embedding/bailian_sparse_emb
{
  "input":[
        "风急天高猿啸哀",
        "渚清沙白鸟飞回", 
        "无边落木萧萧下", 
        "不尽长江滚滚来"
        ]
}

Response(响应结果):

{
  "sparse_embedding": [
    {
      "is_truncated": false,
      "embedding": {
        "风": 0.8291,
        "急": 0.9082,
        "天": 0.5244,
        "高": 0.7725,
        "猿": 0.9863,
        "啸": 0.8521,
        "哀": 0.9004
      }
    },
    {
      "is_truncated": false,
      "embedding": {
        "渚": 1.0488,
        "清": 0.813,
        "沙": 0.8765,
        "白": 0.7061,
        "鸟": 0.9478,
        "飞": 0.7192,
        "回": 0.8579
      }
    },
    {
      "is_truncated": false,
      "embedding": {
        "无": 0.7065,
        "边": 0.8354,
        "落": 0.8672,
        "木": 0.9536,
        "萧": 1.085,
        "下": 0.8149
      }
    },
    {
      "is_truncated": false,
      "embedding": {
        "不": 0.6753,
        "尽": 0.9712,
        "长江": 1.1309,
        "滚": 0.957,
        "来": 0.71
      }
    }
  ]
}

创建模型语法模板:

PUT _inference/rerank/bailian_rerank
{
  "service":"alibaba-cloud-custom-model",
  "service_settings":{
    "secret_parameters":{
      "DASHSCOPE_API_KEY":"<替换为您的API_KEY>"
    },
    "url":"https://dashscope.aliyuncs.com",
    "path":{
      "/api/v1/services/rerank/text-rerank/text-rerank":{
        "POST":{
          "headers":{
            "Authorization": "Bearer ${DASHSCOPE_API_KEY}"
          },
          "request":{
            "format":"string",
            "content":"""
            {
              "model": "${model}",
              "input":{
                "query": "${query}",
                "documents": ${input}
              }
            }
            """
          },
          "response":{
            "json_parser":{
              "relevance_score":".output.results[*].relevance_score",
              "reranked_index":".output.results[*].index"
            }
          }
        }
      }
    }
  },
  "task_settings":{
    "parameters":{
      "model":"gte-rerank"
    }
  }
}

示例:

PUT _inference/rerank/bailian_rerank
{
  "service":"alibaba-cloud-custom-model",
  "service_settings":{
    "secret_parameters":{
      "DASHSCOPE_API_KEY":"sk-xxx"
    },
    "url":"https://dashscope.aliyuncs.com",
    "path":{
      "/api/v1/services/rerank/text-rerank/text-rerank":{
        "POST":{
          "headers":{
            "Authorization": "Bearer ${DASHSCOPE_API_KEY}"
          },
          "request":{
            "format":"string",
            "content":"""
            {
              "model": "${model}",
              "input":{
                "query": "${query}",
                "documents": ${input}
              }
            }
            """
          },
          "response":{
            "json_parser":{
              "relevance_score":".output.results[*].relevance_score",
              "reranked_index":".output.results[*].index"
            }
          }
        }
      }
    }
  },
  "task_settings":{
    "parameters":{
      "model":"gte-rerank"
    }
  }
}

调用模型:

POST _inference/rerank/bailian_rerank
{
  "input": [
    "文本排序模型广泛用于搜索引擎和推荐系统中,它们根据文本相关性对候选文本进行排序",
    "量子计算是计算科学的一个前沿领域",
    "预训练语言模型的发展给文本排序模型带来了新的进展"
  ],
  "query": "什么是文本排序模型"
}

Response(响应结果):

{
  "rerank": [
    {
      "index": 0,
      "relevance_score": 0.7314486
    },
    {
      "index": 2,
      "relevance_score": 0.583172
    },
    {
      "index": 1,
      "relevance_score": 0.049732387
    }
  ]
}

创建模型语法模板:

PUT _inference/completion/bailian_deepseek
{
  "service":"alibaba-cloud-custom-model",
  "service_settings":{
    "secret_parameters":{
      "DASHSCOPE_API_KEY":"<替换为您的API_KEY>"
    },
    "url":"https://dashscope.aliyuncs.com",
    "path":{
      "/compatible-mode/v1/chat/completions":{
        "POST":{
          "headers":{
            "Authorization": "Bearer ${DASHSCOPE_API_KEY}"
          },
          "request":{
            "format":"string",
            "content":"{\"model\":\"deepseek-r1\",\"messages\":${messages}}"
          },
          "response":{
            "json_parser":{
              "completion_result":"$.choices[*].message.content"
            }
          }
        }
      }
    }
  },
  "task_settings":{
    "parameters":{
      "messages":[
        {
            "role": "user",
            "content": "${input}"
        }
    ]
    }
  }
}

示例:

PUT _inference/completion/bailian_deepseek
{
  "service":"alibaba-cloud-custom-model",
  "service_settings":{
    "secret_parameters":{
      "DASHSCOPE_API_KEY":"sk-xxx"
    },
    "url":"https://dashscope.aliyuncs.com",
    "path":{
      "/compatible-mode/v1/chat/completions":{
        "POST":{
          "headers":{
            "Authorization": "Bearer ${DASHSCOPE_API_KEY}"
          },
          "request":{
            "format":"string",
            "content":"{\"model\":\"deepseek-r1\",\"messages\":${messages}}"
          },
          "response":{
            "json_parser":{
              "completion_result":"$.choices[*].message.content"
            }
          }
        }
      }
    }
  },
  "task_settings":{
    "parameters":{
      "messages":[
        {
            "role": "user",
            "content": "${input}"
        }
    ]
    }
  }
}

调用模型:

POST _inference/completion/bailian_deepseek
{
  "input":"你是谁"
}
  • 本页导读
  • 前提条件
  • 步骤一、在百炼平台创建API-KEY
  • 步骤二、在阿里云Elasticsearch中创建大模型服务平台百炼上的模型推理服务
AI助理

点击开启售前

在线咨询服务

你好,我是AI助理

可以解答问题、推荐解决方案等