阿里云的大模型服务平台百炼是一站式的大模型开发及应用构建平台。本文介绍如何在ES中使用模型推理服务使用百炼平台上的模型。
前提条件
步骤一、在百炼平台创建API-KEY
进入阿里云百炼主页,单击右上角用户管理中的API-KEY,进入API-KEY管理界面。
在这里可以看到账号的API-KEY相关信息,单击右上角创建我的API-KEY,创建一个新的API-KEY。
选择对应的归属业务空间后,即可创建新的API-KEY。
创建完API-KEY后,在API-KEY的管理界面,单击查看,即可查看新建的API-KEY的值以及复制API-KEY。
步骤二、在阿里云Elasticsearch中创建大模型服务平台百炼上的模型推理服务
您可以在阿里云ES实例的Kibana中运行以下代码,以创建模型推理服务。
各类型方法如下:
text_embedding类型
sparse_embedding类型
rerank类型
completion类型
本示例以通用文本向量-v3为例,如要使用text-embedding-v1
或text-embedding-v2
,请替换request.content
中的model
名称,以及task_settings.parameters
中的dimension
参数。
创建模型语法模板:
PUT _inference/text_embedding/bailian_embeddings
{
"service":"alibaba-cloud-custom-model",
"service_settings":{
"secret_parameters":{
"DASHSCOPE_API_KEY":"<替换为您的API_KEY>"
},
"url":"https://dashscope.aliyuncs.com",
"path":{
"/compatible-mode/v1/embeddings":{
"POST":{
"headers":{
"Authorization": "Bearer ${DASHSCOPE_API_KEY}",
"Content-Type": "application/json;charset=utf-8"
},
"request":{
"format":"string",
"content":"""
{
"model": "text-embedding-v3",
"input": ${input},
"dimension": "${dimension}",
"encoding_format": "${encoding_format}"
}
"""
},
"response":{
"json_parser":{
"text_embeddings":"$.data[*].embedding"
}
}
}
}
}
},
"task_settings":{
"parameters":{
"dimension":"1024",
"encoding_format":"float"
}
}
}
示例:
PUT _inference/text_embedding/bailian_embeddings
{
"service":"alibaba-cloud-custom-model",
"service_settings":{
"secret_parameters":{
"DASHSCOPE_API_KEY":"sk-xxx"
},
"url":"https://dashscope.aliyuncs.com",
"path":{
"/compatible-mode/v1/embeddings":{
"POST":{
"headers":{
"Authorization": "Bearer ${DASHSCOPE_API_KEY}",
"Content-Type": "application/json;charset=utf-8"
},
"request":{
"format":"string",
"content":"""
{
"model": "text-embedding-v3",
"input": ${input},
"dimension": "${dimension}",
"encoding_format": "${encoding_format}"
}
"""
},
"response":{
"json_parser":{
"text_embeddings":"$.data[*].embedding"
}
}
}
}
}
},
"task_settings":{
"parameters":{
"dimension":"1024",
"encoding_format":"float"
}
}
}
调用模型:
POST _inference/text_embedding/bailian_embeddings
{
"input":[
"风急天高猿啸哀",
"渚清沙白鸟飞回",
"无边落木萧萧下",
"不尽长江滚滚来"
]
}
Response
(响应结果):
{
"text_embedding": [
{
"embedding": [
-0.029477125,
0.058726918,
...
]
},
{
"embedding": [
-0.012646919,
0.08031367,
...
]
},
{
"embedding": [
-0.05844187,
0.09235354,
...
]
},
{
"embedding": [
-0.017527938,
0.058592297,
...
]
}
]
}
创建模型语法模板:
PUT _inference/sparse_embedding/bailian_sparse_emb
{
"service":"alibaba-cloud-custom-model",
"service_settings":{
"secret_parameters":{
"api_key":"<替换为您的API_KEY>"
},
"url":"https://dashscope.aliyuncs.com",
"path":{
"/api/v1/services/embeddings/text-embedding/text-embedding":{
"POST":{
"headers":{
"Authorization": "Bearer ${API_KEY}"
},
"request":{
"format":"string",
"content":"""
{
"model": "text-embedding-v3",
"input": {
"texts": ${input}
},
"parameters": {
"dimension": "${dimension}",
"output_type": "${output_type}"
}
}
"""
},
"response":{
"json_parser":{
"sparse_result":{
"path":"$.output.embeddings[*]",
"value":{
"sparse_token":"$.sparse_embedding[*].token",
"sparse_weight":"$.sparse_embedding[*].value"
}
}
}
}
}
}
}
},
"task_settings":{
"parameters":{
"dimension":1024,
"output_type":"sparse"
}
}
}
示例:
PUT _inference/sparse_embedding/bailian_sparse_emb
{
"service":"alibaba-cloud-custom-model",
"service_settings":{
"secret_parameters":{
"api_key":"sk-xxx"
},
"url":"https://dashscope.aliyuncs.com",
"path":{
"/api/v1/services/embeddings/text-embedding/text-embedding":{
"POST":{
"headers":{
"Authorization": "Bearer ${API_KEY}"
},
"request":{
"format":"string",
"content":"""
{
"model": "text-embedding-v3",
"input": {
"texts": ${input}
},
"parameters": {
"dimension": "${dimension}",
"output_type": "${output_type}"
}
}
"""
},
"response":{
"json_parser":{
"sparse_result":{
"path":"$.output.embeddings[*]",
"value":{
"sparse_token":"$.sparse_embedding[*].token",
"sparse_weight":"$.sparse_embedding[*].value"
}
}
}
}
}
}
}
},
"task_settings":{
"parameters":{
"dimension":1024,
"output_type":"sparse"
}
}
}
调用模型:
POST _inference/sparse_embedding/bailian_sparse_emb
{
"input":[
"风急天高猿啸哀",
"渚清沙白鸟飞回",
"无边落木萧萧下",
"不尽长江滚滚来"
]
}
Response
(响应结果):
{
"sparse_embedding": [
{
"is_truncated": false,
"embedding": {
"风": 0.8291,
"急": 0.9082,
"天": 0.5244,
"高": 0.7725,
"猿": 0.9863,
"啸": 0.8521,
"哀": 0.9004
}
},
{
"is_truncated": false,
"embedding": {
"渚": 1.0488,
"清": 0.813,
"沙": 0.8765,
"白": 0.7061,
"鸟": 0.9478,
"飞": 0.7192,
"回": 0.8579
}
},
{
"is_truncated": false,
"embedding": {
"无": 0.7065,
"边": 0.8354,
"落": 0.8672,
"木": 0.9536,
"萧": 1.085,
"下": 0.8149
}
},
{
"is_truncated": false,
"embedding": {
"不": 0.6753,
"尽": 0.9712,
"长江": 1.1309,
"滚": 0.957,
"来": 0.71
}
}
]
}
创建模型语法模板:
PUT _inference/rerank/bailian_rerank
{
"service":"alibaba-cloud-custom-model",
"service_settings":{
"secret_parameters":{
"DASHSCOPE_API_KEY":"<替换为您的API_KEY>"
},
"url":"https://dashscope.aliyuncs.com",
"path":{
"/api/v1/services/rerank/text-rerank/text-rerank":{
"POST":{
"headers":{
"Authorization": "Bearer ${DASHSCOPE_API_KEY}"
},
"request":{
"format":"string",
"content":"""
{
"model": "${model}",
"input":{
"query": "${query}",
"documents": ${input}
}
}
"""
},
"response":{
"json_parser":{
"relevance_score":".output.results[*].relevance_score",
"reranked_index":".output.results[*].index"
}
}
}
}
}
},
"task_settings":{
"parameters":{
"model":"gte-rerank"
}
}
}
示例:
PUT _inference/rerank/bailian_rerank
{
"service":"alibaba-cloud-custom-model",
"service_settings":{
"secret_parameters":{
"DASHSCOPE_API_KEY":"sk-xxx"
},
"url":"https://dashscope.aliyuncs.com",
"path":{
"/api/v1/services/rerank/text-rerank/text-rerank":{
"POST":{
"headers":{
"Authorization": "Bearer ${DASHSCOPE_API_KEY}"
},
"request":{
"format":"string",
"content":"""
{
"model": "${model}",
"input":{
"query": "${query}",
"documents": ${input}
}
}
"""
},
"response":{
"json_parser":{
"relevance_score":".output.results[*].relevance_score",
"reranked_index":".output.results[*].index"
}
}
}
}
}
},
"task_settings":{
"parameters":{
"model":"gte-rerank"
}
}
}
调用模型:
POST _inference/rerank/bailian_rerank
{
"input": [
"文本排序模型广泛用于搜索引擎和推荐系统中,它们根据文本相关性对候选文本进行排序",
"量子计算是计算科学的一个前沿领域",
"预训练语言模型的发展给文本排序模型带来了新的进展"
],
"query": "什么是文本排序模型"
}
Response
(响应结果):
{
"rerank": [
{
"index": 0,
"relevance_score": 0.7314486
},
{
"index": 2,
"relevance_score": 0.583172
},
{
"index": 1,
"relevance_score": 0.049732387
}
]
}
创建模型语法模板:
PUT _inference/completion/bailian_deepseek
{
"service":"alibaba-cloud-custom-model",
"service_settings":{
"secret_parameters":{
"DASHSCOPE_API_KEY":"<替换为您的API_KEY>"
},
"url":"https://dashscope.aliyuncs.com",
"path":{
"/compatible-mode/v1/chat/completions":{
"POST":{
"headers":{
"Authorization": "Bearer ${DASHSCOPE_API_KEY}"
},
"request":{
"format":"string",
"content":"{\"model\":\"deepseek-r1\",\"messages\":${messages}}"
},
"response":{
"json_parser":{
"completion_result":"$.choices[*].message.content"
}
}
}
}
}
},
"task_settings":{
"parameters":{
"messages":[
{
"role": "user",
"content": "${input}"
}
]
}
}
}
示例:
PUT _inference/completion/bailian_deepseek
{
"service":"alibaba-cloud-custom-model",
"service_settings":{
"secret_parameters":{
"DASHSCOPE_API_KEY":"sk-xxx"
},
"url":"https://dashscope.aliyuncs.com",
"path":{
"/compatible-mode/v1/chat/completions":{
"POST":{
"headers":{
"Authorization": "Bearer ${DASHSCOPE_API_KEY}"
},
"request":{
"format":"string",
"content":"{\"model\":\"deepseek-r1\",\"messages\":${messages}}"
},
"response":{
"json_parser":{
"completion_result":"$.choices[*].message.content"
}
}
}
}
}
},
"task_settings":{
"parameters":{
"messages":[
{
"role": "user",
"content": "${input}"
}
]
}
}
}
调用模型:
POST _inference/completion/bailian_deepseek
{
"input":"你是谁"
}
该文章对您有帮助吗?
- 本页导读
- 前提条件
- 步骤一、在百炼平台创建API-KEY
- 步骤二、在阿里云Elasticsearch中创建大模型服务平台百炼上的模型推理服务