向量化引擎对复杂SQL查询操作有明显的加速,查询性能对比行存引擎可提升50倍以上。本文以TPC-H测试的数据表和SQL为例,体验向量化引擎优势。
本文的TPC-H的实现基于TPC-H的基准测试,并不能与已发布的TPC-H基准测试结果相比较,本文中的测试并不符合TPC-H基准测试的所有要求。
测试说明
TPC-H作为业界常用性能标准测试,由TPC委员会制定发布,用于评测数据库的分析能力。本次向量化引擎查询基础数据包含8张数据表,进行22条复杂的SQL查询,查询语句包含单表统计、多表 Join、子查询、聚合、排序等。
测试数据量:100 GB。
测试环境:
ECS实例和PolarDB集群需保证在同一个VPC中。
ECS:
实例规格:ecs.c5.4xlarge,挂载磁盘空间大于150 GB。
实例镜像:Alibaba Cloud Linux 3.2104 64位。
PolarDB PostgreSQL版集群:
数据库引擎:PostgreSQL 14,且内核小版本14.10.20.0及以上。
产品版本:企业版。
子系列:独享规格。
规格:32核256 GB。
测试步骤
ECS侧准备测试数据。
下载TPCH工具:dbgen.tar.gz。解压并编译。
---解压 tar -zxvf dbgen.tar.gz ---编译 cd ./dbgen make -f makefile.suite
使用TPCH工具生成100 GB测试数据,预计执行时间约30分钟。
---切换到dbgen目录 ./dbgen -s 100 -f
使用高权限账号连接PolarDB集群,将测试数据导入
tpchdb
数据库,连接集群请参考连接数据库集群,安装psql
客户端请参考PolarDB-Tools。---切换到dbgen目录,并使用psql连接集群 \i ./dss.ddl \copy part from ./part.tbl with delimiter as '|' NULL ''; \copy region from ./region.tbl with delimiter as '|' NULL ''; \copy nation from ./nation.tbl with delimiter as '|' NULL ''; \copy orders from ./orders.tbl with delimiter as '|' NULL ''; \copy customer from ./customer.tbl with delimiter as '|' NULL ''; \copy lineitem from ./lineitem.tbl with delimiter as '|' NULL ''; \copy partsupp from ./partsupp.tbl with delimiter as '|' NULL ''; \copy supplier from ./supplier.tbl with delimiter as '|' NULL '';
为测试表格创建列存索引。
--partsupp表 ALTER TABLE PARTSUPP ADD CONSTRAINT partsupp_pkey PRIMARY KEY (PS_PARTKEY, PS_SUPPKEY); CREATE INDEX imps ON partsupp USING csi(ps_partkey, ps_suppkey, ps_availqty, ps_supplycost, ps_comment); --part表 ALTER TABLE PART ADD CONSTRAINT part_kpey PRIMARY KEY (P_PARTKEY); CREATE INDEX im_p ON part USING csi(p_partkey, p_name, p_mfgr, p_brand, p_type, p_size, p_container, p_retailprice, p_comment); --supplier表 ALTER TABLE SUPPLIER ADD CONSTRAINT supplier_pkey PRIMARY KEY (S_SUPPKEY); CREATE INDEX im_s ON supplier USING csi(s_suppkey, s_name, s_address, s_nationkey, s_phone, s_acctbal, s_comment); --customer表 ALTER TABLE CUSTOMER ADD CONSTRAINT customer_pkey PRIMARY KEY (C_CUSTKEY); CREATE INDEX im_c ON customer USING csi(c_custkey, c_name, c_address, c_nationkey, c_phone, c_acctbal, c_mktsegment, c_comment); --orders表 ALTER TABLE ORDERS ADD CONSTRAINT orders_pkey PRIMARY KEY (O_ORDERKEY); CREATE INDEX im_o ON orders USING csi(o_orderkey, o_custkey, o_orderstatus, o_totalprice, o_orderdate, o_orderpriority, o_clerk, o_shippriority, o_comment); --lineitem表 ALTER TABLE LINEITEM ADD CONSTRAINT lineitem_pkey PRIMARY KEY (L_ORDERKEY, L_LINENUMBER); CREATE INDEX im_l ON lineitem USING csi(l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment); --nation表 ALTER TABLE NATION ADD CONSTRAINT nation_pkey PRIMARY KEY (N_NATIONKEY); CREATE INDEX im_n ON nation USING csi(n_nationkey, n_name, n_regionkey, n_comment); --region表 ALTER TABLE REGION ADD CONSTRAINT region_pkey PRIMARY KEY (R_REGIONKEY); CREATE INDEX im_r ON region USING csi(r_regionkey, r_name, r_comment);
设置向量化引擎相关参数,便于后续查询。详细参数介绍请参考参数说明。
SET polar_csi.enable_pk TO ON; SET polar_csi.enable_query TO ON; SET polar_csi.exec_parallel TO 32; SET polar_csi.cost_threshold = 0; SET polar_csi.memory_limit = 49152;
进行22条复杂的SQL查询并统计耗时。
说明使用
psql
连接集群时可以使用\timing
统计语句总计执行时间。查询语句
SQL
Q1
EXPLAIN ANALYZE SELECT l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order FROM lineitem WHERE l_shipdate <= date '1998-12-01' - '60 day'::interval GROUP BY l_returnflag, l_linestatus ORDER BY l_returnflag, l_linestatus;
Q2
EXPLAIN ANALYZE SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment FROM part, supplier, partsupp, nation, region WHERE p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_size = 43 and p_type like '%NICKEL' and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'MIDDLE EAST' and ps_supplycost = ( SELECT min(ps_supplycost) FROM partsupp, supplier, nation, region WHERE p_partkey = ps_partkey and s_suppkey = ps_suppkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'MIDDLE EAST' ) ORDER BY s_acctbal desc, n_name, s_name, p_partkey limit 100;
Q3
EXPLAIN ANALYZE SELECT l_orderkey, sum(l_extendedprice * (1 - l_discount)) as revenue, o_orderdate, o_shippriority FROM customer, orders, lineitem WHERE c_mktsegment = 'FURNITURE' and c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate < date '1995-03-05' and l_shipdate > date '1995-03-05' GROUP BY l_orderkey, o_orderdate, o_shippriority ORDER BY revenue desc, o_orderdate limit 100;
Q4
EXPLAIN ANALYZE SELECT o_orderpriority, count(*) as order_count FROM orders WHERE o_orderdate >= date '1993-05-01' and o_orderdate < date '1993-05-01' + interval '3 month'::interval and exists ( SELECT * FROM lineitem WHERE l_orderkey = o_orderkey and l_commitdate < l_receiptdate ) GROUP BY o_orderpriority ORDER BY o_orderpriority;
Q5
EXPLAIN ANALYZE SELECT n_name, sum(l_extendedprice * (1 - l_discount)) as revenue FROM customer, orders, lineitem, supplier, nation, region WHERE c_custkey = o_custkey and l_orderkey = o_orderkey and l_suppkey = s_suppkey and c_nationkey = s_nationkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'MIDDLE EAST' and o_orderdate >= date '1995-01-01' and o_orderdate < date '1995-01-01' + '1 year'::interval GROUP BY n_name ORDER BY revenue desc;
Q6
EXPLAIN ANALYZE SELECT sum(l_extendedprice * l_discount) as revenue FROM lineitem WHERE l_shipdate >= date '1993-01-01' and l_shipdate < date '1993-01-01' + '1 year'::interval and l_discount between 0.03 - 0.01 and 0.03 + 0.01 and l_quantity < 24;
Q7
EXPLAIN ANALYZE SELECT supp_nation, cust_nation, l_year, sum(volume) AS revenue FROM ( SELECT n1.n_name AS supp_nation, n2.n_name AS cust_nation, extract(year FROM l_shipdate) AS l_year, l_extendedprice * (1 - l_discount) AS volume FROM supplier, lineitem, orders, customer, nation n1, nation n2 WHERE s_suppkey = l_suppkey AND o_orderkey = l_orderkey AND c_custkey = o_custkey AND s_nationkey = n1.n_nationkey AND c_nationkey = n2.n_nationkey AND ((n1.n_name = 'FRANCE' AND n2.n_name = 'GERMANY') OR (n1.n_name = 'GERMANY' AND n2.n_name = 'FRANCE')) AND l_shipdate BETWEEN CAST('1995-01-01' AS date) AND CAST('1996-12-31' AS date)) AS shipping GROUP BY supp_nation, cust_nation, l_year ORDER BY supp_nation, cust_nation, l_year;
Q8
EXPLAIN ANALYZE SELECT o_year, sum(case when nation = 'INDONESIA' then volume else 0 end) / sum(volume) as mkt_share FROM ( SELECT extract(year from o_orderdate) as o_year, l_extendedprice * (1 - l_discount) as volume, n2.n_name as nation FROM part, supplier, lineitem, orders, customer, nation n1, nation n2, region WHERE p_partkey = l_partkey and s_suppkey = l_suppkey and l_orderkey = o_orderkey and o_custkey = c_custkey and c_nationkey = n1.n_nationkey and n1.n_regionkey = r_regionkey and r_name = 'ASIA' and s_nationkey = n2.n_nationkey and o_orderdate between '1995-01-01'::date and '1996-12-31'::date and p_type = 'PROMO POLISHED NICKEL' ) as all_nations GROUP BY o_year ORDER BY o_year;
Q9
EXPLAIN ANALYZE SELECT nation, o_year, sum(amount) as sum_profit FROM ( SELECT n_name as nation, extract(year from o_orderdate) as o_year, l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount FROM part, supplier, lineitem, partsupp, orders, nation WHERE s_suppkey = l_suppkey and ps_suppkey = l_suppkey and ps_partkey = l_partkey and p_partkey = l_partkey and o_orderkey = l_orderkey and s_nationkey = n_nationkey and p_name like '%navajo%' ) as profit GROUP BY nation, o_year ORDER BY nation, o_year desc limit 100;
Q10
EXPLAIN ANALYZE SELECT c_custkey, c_name, sum(l_extendedprice * (1 - l_discount)) as revenue, c_acctbal, n_name, c_address, c_phone, c_comment FROM customer, orders, lineitem, nation WHERE c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate >= date '1993-08-01' and o_orderdate < date '1993-08-01' + '3 month'::interval and l_returnflag = 'R' and c_nationkey = n_nationkey GROUP BY c_custkey, c_name, c_acctbal, c_phone, n_name, c_address, c_comment ORDER BY revenue desc LIMIT 20;
Q11
EXPLAIN ANALYZE SELECT ps_partkey, sum(ps_supplycost * ps_availqty) as value FROM partsupp, supplier, nation WHERE ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = 'ALGERIA' GROUP BY ps_partkey having sum(ps_supplycost * ps_availqty) > ( SELECT sum(ps_supplycost * ps_availqty) * 0.0001000000 FROM partsupp, supplier, nation WHERE ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = 'ALGERIA' ) ORDER BY value desc;
Q12
EXPLAIN ANALYZE SELECT l_shipmode, sum(case when o_orderpriority = '1-URGENT' or o_orderpriority = '2-HIGH' then 1 else 0 end) as high_line_count, sum(case when o_orderpriority <> '1-URGENT' and o_orderpriority <> '2-HIGH' then 1 else 0 end) as low_line_count FROM orders, lineitem WHERE o_orderkey = l_orderkey and l_shipmode in ('AIR', 'FOB') and l_commitdate < l_receiptdate and l_shipdate < l_commitdate and l_receiptdate >= date '1996-01-01' and l_receiptdate < date '1996-01-01' + '1 year'::interval GROUP BY l_shipmode ORDER BY l_shipmode;
Q13
EXPLAIN ANALYZE SELECT c_count, count(*) as custdist FROM ( SELECT c_custkey, count(o_orderkey) FROM customer left outer join orders on c_custkey = o_custkey and o_comment not like '%pending%requests%' GROUP BY c_custkey ) as c_orders (c_custkey, c_count) GROUP BY c_count ORDER BY custdist desc, c_count desc;
Q14
EXPLAIN ANALYZE SELECT 100.00 * sum(case when p_type like 'PROMO%' then l_extendedprice * (1 - l_discount) else 0 end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue FROM lineitem, part WHERE l_partkey = p_partkey and l_shipdate >= date '1995-02-01' and l_shipdate < date '1995-02-01' + interval '1 month'::interval;
Q15
EXPLAIN ANALYZE WITH revenue0 as ( SELECT l_suppkey as supplier_no, sum(l_extendedprice * (1 - l_discount)) as total_revenue FROM lineitem WHERE l_shipdate >= date '1995-08-01' and l_shipdate < date '1995-08-01' + '3 month'::interval GROUP BY l_suppkey) SELECT s_suppkey, s_name, s_address, s_phone, total_revenue FROM supplier, revenue0 WHERE s_suppkey = supplier_no and total_revenue = ( SELECT max(total_revenue) FROM revenue0 ) ORDER BY s_suppkey;
Q16
EXPLAIN ANALYZE SELECT p_brand, p_type, p_size, count(distinct ps_suppkey) as supplier_cnt FROM partsupp, part WHERE p_partkey = ps_partkey and p_brand <> 'Brand#13' and p_type not like 'ECONOMY BRUSHED%' and p_size in (11, 8, 10, 31, 21, 13, 32, 28) and ps_suppkey not in ( SELECT s_suppkey FROM supplier WHERE s_comment like '%Customer%Complaints%' ) GROUP BY p_brand, p_type, p_size ORDER BY supplier_cnt desc, p_brand, p_type, p_size limit 100;
Q17
EXPLAIN ANALYZE SELECT sum(l_extendedprice) / 7.0 as avg_yearly FROM lineitem, part where p_partkey = l_partkey and p_brand = 'Brand#44' and p_container = 'MED PKG' and l_quantity < ( SELECT 0.2 * avg(l_quantity) FROM lineitem WHERE l_partkey = p_partkey );
Q18
EXPLAIN ANALYZE SELECT c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice, sum(l_quantity) FROM customer, orders, lineitem WHERE o_orderkey in ( SELECT l_orderkey FROM lineitem GROUP BY l_orderkey having sum(l_quantity) > 313 ) and c_custkey = o_custkey and o_orderkey = l_orderkey GROUP BY c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice ORDER BY o_totalprice desc, o_orderdate limit 100; --LIMIT 100
Q19
EXPLAIN ANALYZE SELECT sum(l_extendedprice* (1 - l_discount)) as revenue FROM lineitem, part WHERE ( p_partkey = l_partkey and p_brand = 'Brand#15' and p_container in ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG') and l_quantity >= 10 and l_quantity <= 10 + 10 and p_size between 1 and 5 and l_shipmode in ('AIR', 'AIR REG') and l_shipinstruct = 'DELIVER IN PERSON' ) or ( p_partkey = l_partkey and p_brand = 'Brand#45' and p_container in ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK') and l_quantity >= 18 and l_quantity <= 18 + 10 and p_size between 1 and 10 and l_shipmode in ('AIR', 'AIR REG') and l_shipinstruct = 'DELIVER IN PERSON' ) or ( p_partkey = l_partkey and p_brand = 'Brand#21' and p_container in ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG') and l_quantity >= 30 and l_quantity <= 30 + 10 and p_size between 1 and 15 and l_shipmode in ('AIR', 'AIR REG') and l_shipinstruct = 'DELIVER IN PERSON' ); --LIMIT -1
Q20
EXPLAIN ANALYZE SELECT s_name, s_address FROM supplier, nation WHERE s_suppkey in ( SELECT ps_suppkey FROM partsupp WHERE ps_partkey in ( SELECT p_partkey FROM part WHERE p_name like 'lemon%' ) AND ps_availqty > ( SELECT 0.5 * sum(l_quantity) FROM lineitem WHERE l_partkey = ps_partkey and l_suppkey = ps_suppkey and l_shipdate >= date '1997-01-01' and l_shipdate < date '1997-01-01' + '1 year'::interval ) ) and s_nationkey = n_nationkey and n_name = 'INDONESIA' ORDER BY s_name limit 100;
Q21
EXPLAIN ANALYZE SELECT s_name, count(*) as numwait FROM supplier, lineitem l1, orders, nation WHERE s_suppkey = l1.l_suppkey and o_orderkey = l1.l_orderkey and o_orderstatus = 'F' and l1.l_receiptdate > l1.l_commitdate and exists ( SELECT * FROM lineitem l2 WHERE l2.l_orderkey = l1.l_orderkey and l2.l_suppkey <> l1.l_suppkey ) and not exists ( SELECT * FROM lineitem l3 WHERE l3.l_orderkey = l1.l_orderkey and l3.l_suppkey <> l1.l_suppkey and l3.l_receiptdate > l3.l_commitdate ) and s_nationkey = n_nationkey and n_name = 'INDIA' GROUP BY s_name ORDER BY numwait desc, s_name limit 100; --LIMIT 100
Q22
EXPLAIN ANALYZE SELECT cntrycode, count(*) as numcust, sum(c_acctbal) as totacctbal FROM ( SELECT substring(c_phone from 1 for 2) as cntrycode, c_acctbal FROM customer WHERE substring(c_phone from 1 for 2) in ('16', '17', '24', '21', '19', '22', '15') and c_acctbal > ( SELECT avg(c_acctbal) FROM customer WHERE c_acctbal > 0.00 and substring(c_phone from 1 for 2) in ('16', '17', '24', '21', '19', '22', '15') ) and not exists ( SELECT * FROM orders WHERE o_custkey = c_custkey ) ) as custsale GROUP BY cntrycode ORDER BY cntrycode; --LIMIT -1
测试结果
创建列存索引耗时
测试结论:单线程串行创建共耗时39分钟。
列存索引占用空间
测试结论:
行存引擎Heap表占用空间为126 GB。
列存索引占用空间:
不包含主键的情况下(即:
polar_csi.enable_pk=false
),总占用空间为25 GB,为行存引擎Heap表的20%。该模式适用于静态数据构建列存索引。包含主键的情况下(即:
polar_csi.enable_pk=true
),总占用空间为53 GB,为行存引擎Heap表的42%。该模式适用于动态数据的列存索引。
表名称
表中包含的数据行数
PostgreSQL行存
列存索引(不包含主键)
列存索引(包含主键)
LINEITEM
600,037,902
86 GB
17 GB
36 GB
ORDERS
150,000,000
20 GB
4406 MB
9052 MB
PARTSUPP
80,000,000
13 GB
3452 MB
6689 MB
PART
20,000,000
3204 MB
487 MB
634 MB
CUSTOMER
15,000,000
2808 MB
992 MB
1108 MB
SUPPLIER
1,000,000
176 MB
63 MB
72 MB
NATION
25
8 KB
528 KB
528 KB
REGION
5
8 KB
528 KB
528 KB
合计
126 GB
25 GB
53 GB
查询性能
测试结果:
向量化引擎总耗时:32.03秒。
行存引擎总耗时:大于1863秒(Q15超时,不计时间)。
综上,向量化引擎性能是行存引擎性能的近60倍。
查询语句 | PolarDB PostgreSQL版向量化引擎耗时 (单位:秒) | PostgreSQL 行存引擎耗时 (单位:秒) |
Q1 | 1.55 | 41.629 |
Q2 | 0.69 | 78.402 |
Q3 | 1.82 | 18.376 |
Q4 | 1.78 | 3.929 |
Q5 | 2.31 | 14.801 |
Q6 | 1.65 | 4.782 |
Q7 | 2.47 | 17.661 |
Q8 | 2.66 | 21.952 |
Q9 | 3.86 | 362.42 |
Q10 | 1.45 | 18.313 |
Q11 | 0.36 | 8.307 |
Q12 | 0.93 | 7.146 |
Q13 | 2.37 | 308.555 |
Q14 | 0.89 | 10.658 |
Q15 | 0.35 | 超时 |
Q16 | 0.43 | 71.062 |
Q17 | 0.65 | 288 |
Q18 | 1.69 | 473.446 |
Q19 | 1.21 | 0.416 |
Q20 | 0.52 | 83 |
Q21 | 1.87 | 17.387 |
Q22 | 0.52 | 13.458 |
总计耗时 | 32.03 | >=1863.7 |