文档

文本向量生成

更新时间:

文本向量生成, 适用于中文。

说明

本服务由NLP自学习平台提供,直接调用API即可使用。

服务开通与资源包购买

使用前,请确认是否已经开通服务,开通后可购买资源包。

服务调用与调试

模型调用文档参考:模型调用

SDK示例文档参考:SDK示例

调试

您可以在OpenAPI开发者门户中直接运行该接口,免去您计算签名的困扰。运行成功后,OpenAPI开发者门户可以自动生成SDK代码示例。

通过环境变量配置访问凭证(AKSK)

  1. 说明:

    1. 阿里云账号AccessKey拥有所有API的访问权限,风险很高。强烈建议您创建并使用RAM用户进行API访问或日常运维,请登录RAM控制台创建RAM用户。

    2. 强烈建议不要把AccessKey和AccessKeySecret保存到代码里,会存在密钥泄漏风险,在此提供通过配置环境变量的方式来保存和访问aksk

  2. Linux和macOS系统配置方法

    export NLP_AK_ENV=<access_key_id>
    export NLP_SK_ENV=<access_key_secret>

    其中<access_key_id>替换为已准备好的AccessKey ID,<access_key_secret>替换为AccessKey Secret,AccessKey ID和AccessKey Secret的获取方式见步骤二:获取账号的AccessKey

  3. Windows系统配置方法

    1. 新建环境变量文件,添加环境变量NLP_AK_ENVNLP_SK_ENV,并写入已准备好的AccessKey ID和AccessKey Secret。

    2. 重启Windows系统。

Java代码示例

/**
 * 阿里云账号AccessKey拥有所有API的访问权限,风险很高。强烈建议您创建并使用RAM用户进行API访问或日常运维,请登录RAM控制台创建RAM用户。
 * 此处以把AccessKey和AccessKeySecret保存在环境变量为例说明。您也可以根据业务需要,保存到配置文件里。
 * 强烈建议不要把AccessKey和AccessKeySecret保存到代码里,会存在密钥泄漏风险
 */
String accessKeyId = System.getenv("NLP_AK_ENV");
String accessKeySecret = System.getenv("NLP_SK_ENV");
DefaultProfile defaultProfile = DefaultProfile.getProfile("cn-hangzhou",accessKeyId,accessKeySecret);
IAcsClient client = new DefaultAcsClient(defaultProfile);
Map<String, Object> map = new HashMap<>();
map.put("message", "我是中国人'');
RunPreTrainServiceRequest request = new RunPreTrainServiceRequest();
request.setServiceName("NLP-Text-Embedding");
request.setPredictContent(JSON.toJSONString(map));
RunPreTrainServiceResponse response = client.getAcsResponse(request);
System.out.println(response.getPredictResult());

Python代码示例

# 安装依赖
pip install aliyun-python-sdk-core
pip install aliyun-python-sdk-nlp-automl
# -*- coding: utf8 -*-
import json
import os

from aliyunsdkcore.client import AcsClient
from aliyunsdkcore.acs_exception.exceptions import ClientException
from aliyunsdkcore.acs_exception.exceptions import ServerException
from aliyunsdknlp_automl.request.v20191111 import RunPreTrainServiceRequest

/**
 * 阿里云账号AccessKey拥有所有API的访问权限,风险很高。强烈建议您创建并使用RAM用户进行API访问或日常运维,请登录RAM控制台创建RAM用户。
 * 此处以把AccessKey和AccessKeySecret保存在环境变量为例说明。您也可以根据业务需要,保存到配置文件里。
 * 强烈建议不要把AccessKey和AccessKeySecret保存到代码里,会存在密钥泄漏风险
 */
access_key_id = os.environ['NLP_AK_ENV']
access_key_secret = os.environ['NLP_SK_ENV']

# Initialize AcsClient instance
client = AcsClient(
  access_key_id,
  access_key_secret,
  "cn-hangzhou"
);
content ={"message": "我是中国人"}
# Initialize a request and set parameters
request = RunPreTrainServiceRequest.RunPreTrainServiceRequest()
request.set_ServiceName('NLP-Text-Embedding')
request.set_PredictContent(json.dumps(content))
# Print response
response = client.do_action_with_exception(request)
resp_obj = json.loads(response)
predict_result = json.loads(resp_obj['PredictResult'])
print(predict_result['embedding'])

PredictContent内容示例

{
  "message": "我是中国人",
}

PredictResult内容示例

{
 {"embedding":[0.032712288200855255,0.06901254504919052,-0.03633863478899002,-0.06322920322418213,-0.011379375122487545,..]
}

入参说明

参数

说明

message

待预测文本

出参说明

参数

说明

embedding

文本对应的向量表示

  • 本页导读 (0)