文本向量生成, 适用于中文。
说明
本服务由NLP自学习平台提供,直接调用API即可使用。
服务开通与资源包购买
使用前,请确认是否已经开通服务,开通后可购买资源包。
服务调用与调试
模型调用文档参考:模型调用
SDK示例文档参考:SDK示例
调试
您可以在OpenAPI开发者门户中直接运行该接口,免去您计算签名的困扰。运行成功后,OpenAPI开发者门户可以自动生成SDK代码示例。
通过环境变量配置访问凭证(AKSK)
说明:
阿里云账号AccessKey拥有所有API的访问权限,风险很高。强烈建议您创建并使用RAM用户进行API访问或日常运维,请登录RAM控制台创建RAM用户。
强烈建议不要把AccessKey和AccessKeySecret保存到代码里,会存在密钥泄漏风险,在此提供通过配置环境变量的方式来保存和访问aksk
Linux和macOS系统配置方法
export NLP_AK_ENV=<access_key_id> export NLP_SK_ENV=<access_key_secret>
其中<access_key_id>替换为已准备好的AccessKey ID,<access_key_secret>替换为AccessKey Secret,AccessKey ID和AccessKey Secret的获取方式见步骤二:获取账号的AccessKey
Windows系统配置方法
新建环境变量文件,添加环境变量
NLP_AK_ENV
和NLP_SK_ENV
,并写入已准备好的AccessKey ID和AccessKey Secret。重启Windows系统。
Java代码示例
/**
* 阿里云账号AccessKey拥有所有API的访问权限,风险很高。强烈建议您创建并使用RAM用户进行API访问或日常运维,请登录RAM控制台创建RAM用户。
* 此处以把AccessKey和AccessKeySecret保存在环境变量为例说明。您也可以根据业务需要,保存到配置文件里。
* 强烈建议不要把AccessKey和AccessKeySecret保存到代码里,会存在密钥泄漏风险
*/
String accessKeyId = System.getenv("NLP_AK_ENV");
String accessKeySecret = System.getenv("NLP_SK_ENV");
DefaultProfile defaultProfile = DefaultProfile.getProfile("cn-hangzhou",accessKeyId,accessKeySecret);
IAcsClient client = new DefaultAcsClient(defaultProfile);
Map<String, Object> map = new HashMap<>();
map.put("message", "我是中国人'');
RunPreTrainServiceRequest request = new RunPreTrainServiceRequest();
request.setServiceName("NLP-Text-Embedding");
request.setPredictContent(JSON.toJSONString(map));
RunPreTrainServiceResponse response = client.getAcsResponse(request);
System.out.println(response.getPredictResult());
Python代码示例
# 安装依赖
pip install aliyun-python-sdk-core
pip install aliyun-python-sdk-nlp-automl
# -*- coding: utf8 -*-
import json
import os
from aliyunsdkcore.client import AcsClient
from aliyunsdkcore.acs_exception.exceptions import ClientException
from aliyunsdkcore.acs_exception.exceptions import ServerException
from aliyunsdknlp_automl.request.v20191111 import RunPreTrainServiceRequest
/**
* 阿里云账号AccessKey拥有所有API的访问权限,风险很高。强烈建议您创建并使用RAM用户进行API访问或日常运维,请登录RAM控制台创建RAM用户。
* 此处以把AccessKey和AccessKeySecret保存在环境变量为例说明。您也可以根据业务需要,保存到配置文件里。
* 强烈建议不要把AccessKey和AccessKeySecret保存到代码里,会存在密钥泄漏风险
*/
access_key_id = os.environ['NLP_AK_ENV']
access_key_secret = os.environ['NLP_SK_ENV']
# Initialize AcsClient instance
client = AcsClient(
access_key_id,
access_key_secret,
"cn-hangzhou"
);
content ={"message": "我是中国人"}
# Initialize a request and set parameters
request = RunPreTrainServiceRequest.RunPreTrainServiceRequest()
request.set_ServiceName('NLP-Text-Embedding')
request.set_PredictContent(json.dumps(content))
# Print response
response = client.do_action_with_exception(request)
resp_obj = json.loads(response)
predict_result = json.loads(resp_obj['PredictResult'])
print(predict_result['embedding'])
PredictContent内容示例
{
"message": "我是中国人",
}
PredictResult内容示例
{
{"embedding":[0.032712288200855255,0.06901254504919052,-0.03633863478899002,-0.06322920322418213,-0.011379375122487545,..]
}
入参说明
参数 | 说明 |
message | 待预测文本 |
出参说明
参数 | 说明 |
embedding | 文本对应的向量表示 |
文档内容是否对您有帮助?